IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p930-d212615.html
   My bibliography  Save this article

Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation

Author

Listed:
  • Florian Schlosser

    (Dep. Umweltgerechte Produkte und Prozesse, Universität Kassel, Kurt-Wolters-Straße 3, 34125 Kassel, Germany)

  • Ron-Hendrik Peesel

    (Dep. Umweltgerechte Produkte und Prozesse, Universität Kassel, Kurt-Wolters-Straße 3, 34125 Kassel, Germany)

  • Henning Meschede

    (Dep. Umweltgerechte Produkte und Prozesse, Universität Kassel, Kurt-Wolters-Straße 3, 34125 Kassel, Germany)

  • Matthias Philipp

    (Bayernwerk Natur GmbH, Carl-von-Linde-Straße 38, 85716 Unterschleißheim, Germany)

  • Timothy G. Walmsley

    (Sustainable Process Integration Laboratory–SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology-VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic)

  • Michael R. W. Walmsley

    (Energy Research Centre, School of Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand)

  • Martin J. Atkins

    (Energy Research Centre, School of Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand)

Abstract

For increased total site heat integration, the optimal sizing and robust operation of a heat recovery loop (HRL) are prerequisites for economic efficiency. However, sizing based on one representative time series, not considering the variability of process streams due to their discontinuous operation, often leads to oversizing. The sensitive evaluation of the performance of an HRL by Monte Carlo (MC) simulation requires sufficient historical data and performance models. Stochastic time series are generated by distribution functions of measured data. With these inputs, one can then model and reliably assess the benefits of installing a new HRL. A key element of the HRL is a stratified heat storage tank. Validation tests of a stratified tank (ST) showed sufficient accuracy with acceptable simulation time for the variable layer height (VLH) multi-node (MN) modelling approach. The results of the MC simulation of the HRL system show only minor yield losses in terms of heat recovery rate (HRR) for smaller tanks. In this way, costs due to oversizing equipment can be reduced by better understanding the energy-capital trade-off.

Suggested Citation

  • Florian Schlosser & Ron-Hendrik Peesel & Henning Meschede & Matthias Philipp & Timothy G. Walmsley & Michael R. W. Walmsley & Martin J. Atkins, 2019. "Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation," Energies, MDPI, vol. 12(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:930-:d:212615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    2. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    3. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    4. Heiko Dunkelberg & Maximilian Sondermann & Henning Meschede & Jens Hesselbach, 2019. "Assessment of Flexibilisation Potential by Changing Energy Sources Using Monte Carlo Simulation," Energies, MDPI, vol. 12(4), pages 1-24, February.
    5. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    6. Walmsley, Timothy G. & Walmsley, Michael R.W. & Tarighaleslami, Amir H. & Atkins, Martin J. & Neale, James R., 2015. "Integration options for solar thermal with low temperature industrial heat recovery loops," Energy, Elsevier, vol. 90(P1), pages 113-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    2. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    3. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    2. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    3. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    4. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    5. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    6. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    7. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    9. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Neale, James R., 2018. "Utility Exchanger Network synthesis for Total Site Heat Integration," Energy, Elsevier, vol. 153(C), pages 1000-1015.
    10. Philipp, Matthias & Schumm, Gregor & Heck, Patrick & Schlosser, Florian & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J., 2018. "Increasing energy efficiency of milk product batch sterilisation," Energy, Elsevier, vol. 164(C), pages 995-1010.
    11. Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Philipp, Matthias & Peesel, Ron-Hendrik, 2018. "Process and utility systems integration and optimisation for ultra-low energy milk powder production," Energy, Elsevier, vol. 146(C), pages 67-81.
    12. Yang, Sheng & Liang, Jianeng & Yang, Siyu & Qian, Yu, 2016. "A novel cascade refrigeration process using waste heat and its application to coal-to-SNG," Energy, Elsevier, vol. 115(P1), pages 486-497.
    13. Maria Zuba-Ciszewska & Aneta Suchoń, 2024. "The Role of State Aid in the Achievement of the Energy Efficiency Objective in the Food Industry—The Example of Poland," Energies, MDPI, vol. 17(12), pages 1-32, June.
    14. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    15. Wolf, Isabel & Holzapfel, Peter K.R. & Meschede, Henning & Finkbeiner, Matthias, 2023. "On the potential of temporally resolved GHG emission factors for load shifting: A case study on electrified steam generation," Applied Energy, Elsevier, vol. 348(C).
    16. Abdelouadoud, Yasmina & Lucas, Edward & Krummenacher, Pierre & Olsen, Donald & Wellig, Beat, 2019. "Batch process heat storage integration: A simple and effective graphical approach," Energy, Elsevier, vol. 185(C), pages 804-818.
    17. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
    18. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    19. Lee, Zachary E. & Zhang, K. Max, 2021. "Scalable identification and control of residential heat pumps: A minimal hardware approach," Applied Energy, Elsevier, vol. 286(C).
    20. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:930-:d:212615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.