IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p296-d198852.html
   My bibliography  Save this article

Struvite—An Innovative Fertilizer from Anaerobic Digestate Produced in a Bio-Refinery

Author

Listed:
  • Magdalena Szymańska

    (Department of Soil Environment Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland)

  • Ewa Szara

    (Department of Soil Environment Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland)

  • Adam Wąs

    (Department of Economics and Organisation of Enterprises, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Tomasz Sosulski

    (Department of Soil Environment Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland)

  • Gijs W.P. van Pruissen

    (Cornelissen Consulting Services BV, Binnensingel 3, 7411 PL Deventer, The Netherlands)

  • René L. Cornelissen

    (Cornelissen Consulting Services BV, Binnensingel 3, 7411 PL Deventer, The Netherlands)

Abstract

This paper presents the results of a pot experiment aimed at the assessment of the fertilizer value of struvite, a precipitation product obtained from a liquid fraction of the digestate. The effects of struvite (STR), struvite + ammonium sulphate (STR + N) and ammonium phosphate (AP) treatments were examined on maize and grass cultivation on silty loam and loamy sand soil. The crop yields were found to depend on both the soil type and experimental treatment. Crop yields produced under STR and STR + N exceeded those under the control treatments by respectively 66% and 108% for maize, and 94% and 110% for grass. Crop yields under STR + N were similar or greater than those under the AP treatment. The nitrogen recovery by maize and grass reached respectively 68% and 62% from the struvite and 78% and 52% from AP. The phosphorus recovery by maize and grass reached 7.3% and 4.8%, respectively, from struvite (i.e., STR and STR + N), which was lower than that from the AP (18.4% by maize and 8.1% by grass).

Suggested Citation

  • Magdalena Szymańska & Ewa Szara & Adam Wąs & Tomasz Sosulski & Gijs W.P. van Pruissen & René L. Cornelissen, 2019. "Struvite—An Innovative Fertilizer from Anaerobic Digestate Produced in a Bio-Refinery," Energies, MDPI, vol. 12(2), pages 1-9, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:296-:d:198852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Szymańska & Ewa Szara & Tomasz Sosulski & Adam Wąs & Gijs W. P. Van Pruissen & René L. Cornelissen & Mieczysław Borowik & Marcin Konkol, 2019. "A Bio-Refinery Concept for N and P Recovery—A Chance for Biogas Plant Development," Energies, MDPI, vol. 12(1), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Jama-Rodzeńska & Piotr Chohura & Bernard Gałka & Anna Szuba-Trznadel & Agnieszka Falkiewicz & Monika Białkowska, 2022. "Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce ( Lactuca sativa L.) Grown in Peat Substrate," Agriculture, MDPI, vol. 12(6), pages 1-11, May.
    2. Magdalena Szymańska & Tomasz Sosulski & Adriana Bożętka & Urszula Dawidowicz & Adam Wąs & Ewa Szara & Agata Malak-Rawlikowska & Piotr Sulewski & Gijs W. P. van Pruissen & René L. Cornelissen, 2020. "Evaluating the Struvite Recovered from Anaerobic Digestate in a Farm Bio-Refinery as a Slow-Release Fertiliser," Energies, MDPI, vol. 13(20), pages 1-15, October.
    3. Afifi Akhiar & Felipe Guilayn & Michel Torrijos & Audrey Battimelli & Abd Halim Shamsuddin & Hélène Carrère, 2021. "Correlations between the Composition of Liquid Fraction of Full-Scale Digestates and Process Conditions," Energies, MDPI, vol. 14(4), pages 1-24, February.
    4. Marcin Sońta & Andrzej Łozicki & Magdalena Szymańska & Tomasz Sosulski & Ewa Szara & Adam Wąs & Gijs W. P. van Pruissen & René L. Cornelissen, 2020. "Duckweed from a Biorefinery System: Nutrient Recovery Efficiency and Forage Value," Energies, MDPI, vol. 13(20), pages 1-14, October.
    5. Rebeka Pajura & Adam Masłoń & Joanna Czarnota, 2023. "The Use of Waste to Produce Liquid Fertilizers in Terms of Sustainable Development and Energy Consumption in the Fertilizer Industry—A Case Study from Poland," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Magdalena Szymańska & Tomasz Sosulski & Ewa Szara & Adam Wąs & Piotr Sulewski & Gijs W.P. van Pruissen & René L. Cornelissen, 2019. "Ammonium Sulphate from a Bio-Refinery System as a Fertilizer—Agronomic and Economic Effectiveness on the Farm Scale," Energies, MDPI, vol. 12(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Duck Ryu & Do Young Lim & Sun-Jung Kim & Un-Il Baek & Eu Gene Chung & Kyunghyun Kim & Jae Kwan Lee, 2020. "Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    2. Magdalena Szymańska & Tomasz Sosulski & Ewa Szara & Adam Wąs & Piotr Sulewski & Gijs W.P. van Pruissen & René L. Cornelissen, 2019. "Ammonium Sulphate from a Bio-Refinery System as a Fertilizer—Agronomic and Economic Effectiveness on the Farm Scale," Energies, MDPI, vol. 12(24), pages 1-15, December.
    3. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    4. Shah, Syed Ale Raza & Naqvi, Syed Asif Ali & Riaz, Sabahat & Anwar, Sofia & Abbas, Nasir, 2020. "Nexus of biomass energy, key determinants of economic development and environment: A fresh evidence from Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Barampouti, E.M. & Mai, S. & Malamis, D. & Moustakas, K. & Loizidou, M., 2020. "Exploring technological alternatives of nutrient recovery from digestate as a secondary resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Magdalena Szymańska & Tomasz Sosulski & Adriana Bożętka & Urszula Dawidowicz & Adam Wąs & Ewa Szara & Agata Malak-Rawlikowska & Piotr Sulewski & Gijs W. P. van Pruissen & René L. Cornelissen, 2020. "Evaluating the Struvite Recovered from Anaerobic Digestate in a Farm Bio-Refinery as a Slow-Release Fertiliser," Energies, MDPI, vol. 13(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:296-:d:198852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.