IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4785-d298336.html
   My bibliography  Save this article

Analysis of Grid-Connected Photovoltaic Generation Systems in the Harmonic Domain

Author

Listed:
  • Marcolino Humberto Díaz-Araujo

    (Facultad de Ingeniería Eléctrica, División de Estudios de Posgrado, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, CP 58030, Mexico)

  • Aurelio Medina-Rios

    (Facultad de Ingeniería Eléctrica, División de Estudios de Posgrado, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, CP 58030, Mexico)

  • Manuel Madrigal-Martínez

    (Programa de Graduados e Investigación en Ingeniería Eléctrica, Instituto Tecnológico de Morelia, Morelia, Michoacán, CP 58030, Mexico)

  • Luis Arthur Cleary-Balderas

    (Facultad de Ingeniería Eléctrica, División de Estudios de Posgrado, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Michoacán, CP 58030, Mexico)

Abstract

In this contribution, a harmonic domain (HD) model of grid-connected photovoltaic (PV) generation systems is proposed. The topology of the PV generation system contains a PV array connected to a DC/DC converter and a DC/AC converter, coupled to the grid through a filter. The individual components of the PV system are modeled in the HD. The PV array is represented as a Thevenin equivalent, whereas the DC/DC converter and the DC/AC converter are represented in the HD using switching function matrices. The periodic steady-state solution of the PV system is obtained through simple matrix/vector operations. The results obtained by the proposed model are validated against the response obtained with the PSCAD/EMTDC ® simulator, widely accepted by the power industry.

Suggested Citation

  • Marcolino Humberto Díaz-Araujo & Aurelio Medina-Rios & Manuel Madrigal-Martínez & Luis Arthur Cleary-Balderas, 2019. "Analysis of Grid-Connected Photovoltaic Generation Systems in the Harmonic Domain," Energies, MDPI, vol. 12(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4785-:d:298336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    2. Marcolino Díaz-Araujo & Aurelio Medina & Rafael Cisneros-Magaña & Amner Ramírez, 2018. "Periodic Steady State Assessment of Microgrids with Photovoltaic Generation Using Limit Cycle Extrapolation and Cubic Splines," Energies, MDPI, vol. 11(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zekun Sun & Hao Liu & Yueming Ding & Haopeng Luo & Ting Liu & Qinyue Tan, 2022. "Collaborative Control Strategy of Power Quality Based on Residual Capacity of Photovoltaic Inverter," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    2. Zini, Gabriele & Mangeant, Christophe & Merten, Jens, 2011. "Reliability of large-scale grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 36(9), pages 2334-2340.
    3. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    4. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    5. Ku Ahmad, Ku Nurul Edhura & Selvaraj, Jeyraj & Rahim, Nasrudin Abd, 2013. "A review of the islanding detection methods in grid-connected PV inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 756-766.
    6. Mirhassani, SeyedMohsen & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2015. "Advances and challenges in grid tied photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 121-131.
    7. Patrao, Iván & Figueres, Emilio & González-Espín, Fran & Garcerá, Gabriel, 2011. "Transformerless topologies for grid-connected single-phase photovoltaic inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3423-3431, September.
    8. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    9. Qureshi, Tahir Masood & Ullah, Kafait & Arentsen, Maarten J., 2017. "Factors responsible for solar PV adoption at household level: A case of Lahore, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 754-763.
    10. Dhanuja Lekshmi J & Zakir Hussain Rather & Bikash C Pal, 2021. "A New Tool to Assess Maximum Permissible Solar PV Penetration in a Power System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    11. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    12. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    13. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    14. Wu, Jie & Wang, Zhi-Xin & Xu, Lie & Wang, Guo-Qiang, 2014. "Key technologies of VSC-HVDC and its application on offshore wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 247-255.
    15. Haque, M. Mejbaul & Wolfs, Peter, 2016. "A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1195-1208.
    16. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    17. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    18. Veena, P. & Indragandhi, V. & Jeyabharath, R. & Subramaniyaswamy, V., 2014. "Review of grid integration schemes for renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 628-641.
    19. Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
    20. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4785-:d:298336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.