IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4404-d288806.html
   My bibliography  Save this article

Modelling the Ammoniation of Barium Chloride for Chemical Heat Transformations

Author

Listed:
  • Samuel Hinmers

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

  • Robert E. Critoph

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

Abstract

The coupling of reversible ammoniation reactions between two salts presents a method for the exploitation of low grade waste heat. This resorption configuration can be used for thermal transformation or heat pumping, to recover waste heat to primary producers, or for integration in heat networks. To understand the solid/gas reaction behaviour and to model its kinetics, Large Temperature Jump (LTJ) experiments were performed on a composite of barium chloride in an expanded natural graphite (ENG) matrix. A model has been built using a semi-empirical equation from the literature, which has been validated with the LTJ results. The results suggest the semi-empirical model provides a reasonable prediction for solid/gas reactions once the constants have been identified. Enhancing the model to handle sequential phase change reactions will enable a wide number of salts to be modelled, making the design of a resorption system practicable.

Suggested Citation

  • Samuel Hinmers & Robert E. Critoph, 2019. "Modelling the Ammoniation of Barium Chloride for Chemical Heat Transformations," Energies, MDPI, vol. 12(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4404-:d:288806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aristov, Yuri I., 2017. "Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 105-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel Hinmers & George H. Atkinson & Robert E. Critoph & Michel van der Pal, 2022. "Resorption Thermal Transformer Generator Design," Energies, MDPI, vol. 15(6), pages 1-29, March.
    2. Aristov, Yuri I., 2020. "Dynamics of adsorptive heat conversion systems: Review of basics and recent advances," Energy, Elsevier, vol. 205(C).
    3. George H. Atkinson & Samuel Hinmers & Robert E. Critoph & Michel van der Pal, 2021. "Ammonium Chloride (NH 4 Cl)—Ammonia (NH 3 ): Sorption Characteristics for Heat Pump Applications," Energies, MDPI, vol. 14(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    2. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    3. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).
    4. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Cao, Haibo & Li, Zhexu & Peng, Wanli & Yang, Hanxin & Guo, Juncheng, 2023. "Optimal analyses and performance bounds of the low-dissipation three-terminal heat transformer: The roles of the parameter constraints and optimization criteria," Energy, Elsevier, vol. 277(C).
    6. Tokarev, M.M. & Aristov, Yu.I., 2017. "A new version of the Large Temperature Jump method: The thermal response (T–LTJ)," Energy, Elsevier, vol. 140(P1), pages 481-487.
    7. Papakokkinos, Giorgos & Castro, Jesús & López, Joan & Oliva, Assensi, 2019. "A generalized computational model for the simulation of adsorption packed bed reactors – Parametric study of five reactor geometries for cooling applications," Applied Energy, Elsevier, vol. 235(C), pages 409-427.
    8. Aristov, Yuri I., 2020. "Dynamics of adsorptive heat conversion systems: Review of basics and recent advances," Energy, Elsevier, vol. 205(C).
    9. Larisa Gordeeva & Yuri Aristov, 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application," Energies, MDPI, vol. 15(20), pages 1-25, October.
    10. Tokarev, M.M. & Zlobin, A.A. & Aristov, Yu.I., 2019. "A new version of the large pressure jump (T-LPJ) method for dynamic study of pressure-initiated adsorptive cycles for heat storage and transformation," Energy, Elsevier, vol. 179(C), pages 542-548.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4404-:d:288806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.