IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4310-d286136.html
   My bibliography  Save this article

Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm

Author

Listed:
  • Zelan Li

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yijia Cao

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Le Van Dai

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Xiaoliang Yang

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

  • Thang Trung Nguyen

    (Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

Abstract

In the paper, a modified coyote optimization algorithm (MCOA) is proposed for finding highly effective solutions for the optimal power flow (OPF) problem. In the OPF problem, total active power losses in all transmission lines and total electric generation cost of all available thermal units are considered to be reduced as much as possible meanwhile all constraints of transmission power systems such as generation and voltage limits of generators, generation limits of capacitors, secondary voltage limits of transformers, and limit of transmission lines are required to be exactly satisfied. MCOA is an improved version of the original coyote optimization algorithm (OCOA) with two modifications in two new solution generation techniques and one modification in the solution exchange technique. As compared to OCOA, the proposed MCOA has high contributions as follows: (i) finding more promising optimal solutions with a faster manner, (ii) shortening computation steps, and (iii) reaching higher success rate. Three IEEE transmission power networks are used for comparing MCOA with OCOA and other existing conventional methods, improved versions of these conventional methods, and hybrid methods. About the constraint handling ability, the success rate of MCOA is, respectively, 100%, 96%, and 52% meanwhile those of OCOA is, respectively, 88%, 74%, and 16%. About the obtained solutions, the improvement level of MCOA over OCOA can be up to 30.21% whereas the improvement level over other existing methods is up to 43.88%. Furthermore, these two methods are also executed for determining the best location of a photovoltaic system (PVS) with rated power of 2.0 MW in an IEEE 30-bus system. As a result, MCOA can reduce fuel cost and power loss by 0.5% and 24.36%. Therefore, MCOA can be recommended to be a powerful method for optimal power flow study on transmission power networks with considering the presence of renewable energies.

Suggested Citation

  • Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm," Energies, MDPI, vol. 12(22), pages 1-36, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4310-:d:286136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thang Trung Nguyen & Nguyen Vu Quynh & Le Van Dai, 2018. "Improved Firefly Algorithm: A Novel Method for Optimal Operation of Thermal Generating Units," Complexity, Hindawi, vol. 2018, pages 1-23, July.
    2. Thang Trung Nguyen & Dieu Ngoc Vo & Nguyen Vu Quynh & Le Van Dai, 2018. "Modified Cuckoo Search Algorithm: A Novel Method to Minimize the Fuel Cost," Energies, MDPI, vol. 11(6), pages 1-27, May.
    3. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    4. Nguyen, Thang Trung, 2019. "A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization," Energy, Elsevier, vol. 171(C), pages 218-240.
    5. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad & Nouh, Adnan S., 2019. "Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules," Energy, Elsevier, vol. 187(C).
    6. Vijay Raviprabakaran & Ravichandran Coimbatore Subramanian, 2018. "Enhanced ant colony optimization to solve the optimal power flow with ecological emission," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 58-65, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    2. Po-Chou Shih & Chui-Yu Chiu & Chi-Hsun Chou, 2019. "Using Dynamic Adjusting NGHS-ANN for Predicting the Recidivism Rate of Commuted Prisoners," Mathematics, MDPI, vol. 7(12), pages 1-25, December.
    3. Francisco Quinteros & Diego Carrión & Manuel Jaramillo, 2022. "Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria," Energies, MDPI, vol. 15(6), pages 1-23, March.
    4. Jie Cai & Shuyu Guo & Shuang Liao & Xing Chen & Shihong Miao & Yaowang Li, 2020. "Optimization Model of Key Equipment Maintenance Scheduling for an AC/DC Hybrid Transmission Network Based on Mixed Integer Linear Programming," Energies, MDPI, vol. 13(4), pages 1-26, February.
    5. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    2. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    3. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    4. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    5. Mahmoud A. Ali & Salah Kamel & Mohamed H. Hassan & Emad M. Ahmed & Mohana Alanazi, 2022. "Optimal Power Flow Solution of Power Systems with Renewable Energy Sources Using White Sharks Algorithm," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    6. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Hasanien, Hany M. & Ginidi, Ahmed R., 2022. "An improved heap optimization algorithm for efficient energy management based optimal power flow model," Energy, Elsevier, vol. 250(C).
    7. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    8. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    9. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    10. Sherif S. M. Ghoneim & Mohamed F. Kotb & Hany M. Hasanien & Mosleh M. Alharthi & Attia A. El-Fergany, 2021. "Cost Minimizations and Performance Enhancements of Power Systems Using Spherical Prune Differential Evolution Algorithm Including Modal Analysis," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    11. El Sehiemy, Ragab A. & Selim, F. & Bentouati, Bachir & Abido, M.A., 2020. "A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems," Energy, Elsevier, vol. 193(C).
    12. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    13. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    14. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    15. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    16. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    17. Habib Kraiem & Ezzeddine Touti & Abdulaziz Alanazi & Ahmed M. Agwa & Tarek I. Alanazi & Mohamed Jamli & Lassaad Sbita, 2023. "Parameters Identification of Photovoltaic Cell and Module Models Using Modified Social Group Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    18. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    19. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    20. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4310-:d:286136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.