IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1187-d293909.html
   My bibliography  Save this article

Using Dynamic Adjusting NGHS-ANN for Predicting the Recidivism Rate of Commuted Prisoners

Author

Listed:
  • Po-Chou Shih

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Chui-Yu Chiu

    (Industrial Engineering and Management, National Taipei University of Technology, Taipei 10632, Taiwan)

  • Chi-Hsun Chou

    (Taoyuan Prison, Agency of Corrections, Ministry of Justice, Taoyuan 33056, Taiwan
    Graduate School of Crime Prevention and Corrections, Central Police University, Taoyuan 33304, Taiwan)

Abstract

Commutation is a judicial policy that is implemented in most countries. The recidivism rate of commuted prisoners directly affects people’s perceptions and trust of commutation. Hence, if the recidivism rate of a commuted prisoner could be accurately predicted before the person returns to society, the number of reoffences could be reduced; thereby, enhancing trust in the process. Therefore, it is of considerable importance that the recidivism rates of commuted prisoners are accurately predicted. The dynamic adjusting novel global harmony search (DANGHS) algorithm, as proposed in 2018, is an improved algorithm that combines dynamic parameter adjustment strategies and the novel global harmony search (NGHS). The DANGHS algorithm improves the searching ability of the NGHS algorithm by using dynamic adjustment strategies for genetic mutation probability. In this paper, we combined the DANGHS algorithm and an artificial neural network (ANN) into a DANGHS-ANN forecasting system to predict the recidivism rate of commuted prisoners. To verify the prediction performance of the DANGHS-ANN algorithm, we compared the experimental results with five other forecasting systems. The results showed that the proposed DANGHS-ANN algorithm gave more accurate predictions. In addition, the use of the threshold linear posterior decreasing strategy with the DANGHS-ANN forecasting system resulted in more accurate predictions of recidivism. Finally, the metaheuristic algorithm performs better searches with the dynamic parameter adjustment strategy than without it.

Suggested Citation

  • Po-Chou Shih & Chui-Yu Chiu & Chi-Hsun Chou, 2019. "Using Dynamic Adjusting NGHS-ANN for Predicting the Recidivism Rate of Commuted Prisoners," Mathematics, MDPI, vol. 7(12), pages 1-25, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1187-:d:293909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valian, Ehsan & Tavakoli, Saeed & Mohanna, Shahram, 2014. "An intelligent global harmony search approach to continuous optimization problems," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 670-684.
    2. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm," Energies, MDPI, vol. 12(22), pages 1-36, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Quinteros & Diego Carrión & Manuel Jaramillo, 2022. "Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria," Energies, MDPI, vol. 15(6), pages 1-23, March.
    2. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    3. Amaya, Ivan & Cruz, Jorge & Correa, Rodrigo, 2015. "Harmony Search algorithm: a variant with Self-regulated Fretwidth," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1127-1152.
    4. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    5. Hu, Gang & Du, Bo & Li, Huinan & Wang, Xupeng, 2022. "Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 428-467.
    6. Bereg, Sergey & Díaz-Báñez, José-Miguel & Kroher, Nadine & Ventura, Inmaculada, 2019. "Computing melodic templates in oral music traditions," Applied Mathematics and Computation, Elsevier, vol. 344, pages 219-229.
    7. Jie Cai & Shuyu Guo & Shuang Liao & Xing Chen & Shihong Miao & Yaowang Li, 2020. "Optimization Model of Key Equipment Maintenance Scheduling for an AC/DC Hybrid Transmission Network Based on Mixed Integer Linear Programming," Energies, MDPI, vol. 13(4), pages 1-26, February.
    8. Khoroshiltseva, Marina & Slanzi, Debora & Poli, Irene, 2016. "A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices," Applied Energy, Elsevier, vol. 184(C), pages 1400-1410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1187-:d:293909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.