IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4274-d285263.html
   My bibliography  Save this article

DC Side Bus Voltage Control of Wind Power Grid-Connected Inverter Based on Second-Order Linear Active Disturbance Rejection Control

Author

Listed:
  • Youjie Ma

    (Tianjin Key Laboratory for Control Theory and Application in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China
    School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China)

  • Faqing Zhao

    (Tianjin Key Laboratory for Control Theory and Application in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China
    School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China)

  • Xuesong Zhou

    (Tianjin Key Laboratory for Control Theory and Application in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China
    School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China)

  • Mao Liu

    (Tianjin Key Laboratory for Control Theory and Application in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China
    School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China)

  • Bao Yang

    (Tianjin Key Laboratory for Control Theory and Application in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China
    School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China)

Abstract

In order to improve the dynamic response speed and the steady-state performance of the DC side bus voltage of the wind power grid-connected inverter, a mathematical model of a typical three-phase voltage type PWM (Pulse Width Modulation, PWM) grid-connected inverter was established, and its traditional voltage-current double closed loop with proportional-integral control method was analyzed. Then a second-order linear active disturbance rejection controller that does not depend on system model information was designed to replace the traditional voltage outer loop proportional-integral controller, thus a new double closed-loop control structure was formed to control it. The frequency domain theory was used to analyze the convergence of the third-order linear extended state observer and the influence of the total disturbance on the performance of the third-order linear extended state observer. The parameter tuning scheme of the designed controller was given. Finally, the 1.5 MW direct-driven permanent magnet wind power generation system was built in the Matlab/Simulink software and the control effects of the two control modes under different working conditions are compared. The simulation results show that the control scheme designed in this paper is superior to the traditional proportional-integral controller which has good anti-interference characteristics and robustness. Especially it has a good stability effect on DC side bus voltage fluctuations.

Suggested Citation

  • Youjie Ma & Faqing Zhao & Xuesong Zhou & Mao Liu & Bao Yang, 2019. "DC Side Bus Voltage Control of Wind Power Grid-Connected Inverter Based on Second-Order Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 12(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4274-:d:285263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sung-Won Lee & Kwan-Ho Chun, 2019. "Adaptive Sliding Mode Control for PMSG Wind Turbine Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    2. Pedro G. Lind & Luis Vera-Tudela & Matthias Wächter & Martin Kühn & Joachim Peinke, 2017. "Normal Behaviour Models for Wind Turbine Vibrations: Comparison of Neural Networks and a Stochastic Approach," Energies, MDPI, vol. 10(12), pages 1-14, November.
    3. Coral-Enriquez, Horacio & Cortés-Romero, John & Dorado-Rojas, Sergio A., 2019. "Rejection of varying-frequency periodic load disturbances in wind-turbines through active disturbance rejection-based control," Renewable Energy, Elsevier, vol. 141(C), pages 217-235.
    4. Chenxing Yang & Xu Yang & Yuri A. W. Shardt, 2018. "An ADRC-Based Control Strategy for FRT Improvement of Wind Power Generation with a Doubly-Fed Induction Generator," Energies, MDPI, vol. 11(5), pages 1-19, May.
    5. Ting He & Zhenlong Wu & Rongqi Shi & Donghai Li & Li Sun & Lingmei Wang & Song Zheng, 2019. "Maximum Sensitivity-Constrained Data-Driven Active Disturbance Rejection Control with Application to Airflow Control in Power Plant," Energies, MDPI, vol. 12(2), pages 1-23, January.
    6. Tan Yanghong & Zhang Haixia & Zhou Ye, 2018. "A Simple-to-Implement Fault Diagnosis Method for Open Switch Fault in Wind System PMSG Drives without Threshold Setting," Energies, MDPI, vol. 11(10), pages 1-18, September.
    7. Yan, Jianhu & Lin, Heyun & Feng, Yi & Zhu, Z.Q., 2014. "Control of a grid-connected direct-drive wind energy conversion system," Renewable Energy, Elsevier, vol. 66(C), pages 371-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuesong Zhou & Yongliang Zhou & Youjie Ma & Luyong Yang & Xia Yang & Bo Zhang, 2020. "DC Bus Voltage Control of Grid-Side Converter in Permanent Magnet Synchronous Generator Based on Improved Second-Order Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 13(18), pages 1-19, September.
    2. Changsheng Yuan & Xuesong Zhou & Youjie Ma & Zhiqiang Gao & Yongliang Zhou & Chenglong Wang, 2020. "Improved Application of Third-Order LADRC in Wind Power Inverter," Energies, MDPI, vol. 13(17), pages 1-22, August.
    3. Youjie Ma & Xiaotong Sun & Xuesong Zhou, 2020. "Research on D-STATCOM Double Closed-Loop Control Method Based on Improved First-Order Linear Active Disturbance Rejection Technology," Energies, MDPI, vol. 13(15), pages 1-19, August.
    4. Youjie Ma & Xia Yang & Xuesong Zhou & Luyong Yang & Yongliang Zhou, 2020. "Dual Closed-Loop Linear Active Disturbance Rejection Control of Grid-Side Converter of Permanent Magnet Direct-Drive Wind Turbine," Energies, MDPI, vol. 13(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjie Ma & Long Tao & Xuesong Zhou & Wei Li & Xueqi Shi, 2019. "Analysis and Control of Wind Power Grid Integration Based on a Permanent Magnet Synchronous Generator Using a Fuzzy Logic System with Linear Extended State Observer," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Youjie Ma & Luyong Yang & Xuesong Zhou & Xia Yang & Yongliang Zhou & Bo Zhang, 2020. "Linear Active Disturbance Rejection Control for DC Bus Voltage Under Low-Voltage Ride-Through at the Grid-Side of Energy Storage System," Energies, MDPI, vol. 13(5), pages 1-22, March.
    3. Youjie Ma & Xia Yang & Xuesong Zhou & Luyong Yang & Yongliang Zhou, 2020. "Dual Closed-Loop Linear Active Disturbance Rejection Control of Grid-Side Converter of Permanent Magnet Direct-Drive Wind Turbine," Energies, MDPI, vol. 13(5), pages 1-21, March.
    4. Mintra Trongtorkarn & Thanansak Theppaya & Kuaanan Techato & Montri Luengchavanon & Chainuson Kasagepongsarn, 2021. "Relationship between Starting Torque and Thermal Behaviour for a Permanent Magnet Synchronous Generator (PMSG) Applied with Vertical Axis Wind Turbine (VAWT)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    5. Huo, Zhihong & Xu, Chang, 2022. "Distributed cooperative automatic generation control and multi-event triggered mechanisms co-design for networked wind-integrated power systems," Renewable Energy, Elsevier, vol. 193(C), pages 41-56.
    6. Gengjin Shi & Zhenlong Wu & Jian Guo & Donghai Li & Yanjun Ding, 2020. "Superheated Steam Temperature Control Based on a Hybrid Active Disturbance Rejection Control," Energies, MDPI, vol. 13(7), pages 1-26, April.
    7. Liang Wu & Lin Guan & Feng Li & Qi Zhao & Yingjun Zhuo & Peng Chen & Yaotang Lv, 2018. "Optimal Dynamic Reactive Power Reserve for Wind Farms Addressing Short-Term Voltage Issues Caused by Wind Turbines Tripping," Energies, MDPI, vol. 11(7), pages 1-15, July.
    8. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    9. Fan Zhang & Yali Xue & Donghai Li & Zhenlong Wu & Ting He, 2019. "On the Flexible Operation of Supercritical Circulating Fluidized Bed: Burning Carbon Based Decentralized Active Disturbance Rejection Control," Energies, MDPI, vol. 12(6), pages 1-18, March.
    10. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    11. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    12. Hui-Yu Jin & Yang Chen, 2023. "First-Order Linear Active Disturbance Rejection Control for Turbofan Engines," Energies, MDPI, vol. 16(6), pages 1-17, March.
    13. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.
    14. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    15. Pedro Lencastre & Anis Yazidi & Pedro G. Lind, 2024. "Modeling Wind-Speed Statistics beyond the Weibull Distribution," Energies, MDPI, vol. 17(11), pages 1-11, May.
    16. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    17. Giannakis, Andreas & Karlis, Athanasios & Karnavas, Yannis L., 2018. "A combined control strategy of a DFIG based on a sensorless power control through modified phase-locked loop and fuzzy logic controllers," Renewable Energy, Elsevier, vol. 121(C), pages 489-501.
    18. Xuesong Zhou & Mao Liu & Youjie Ma & Bao Yang & Faqing Zhao, 2019. "Linear Active Disturbance Rejection Control for DC Bus Voltage of Permanent Magnet Synchronous Generator Based on Total Disturbance Differential," Energies, MDPI, vol. 12(20), pages 1-22, October.
    19. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    20. Michał Gwóźdź & Michał Krystkowiak & Łukasz Ciepliński & Ryszard Strzelecki, 2020. "A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux," Energies, MDPI, vol. 13(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4274-:d:285263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.