IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3873-d275997.html
   My bibliography  Save this article

Modelling and Analysis of Energy Harvesting in Internet of Things (IoT): Characterization of a Thermal Energy Harvesting Circuit for IoT based Applications with LTC3108

Author

Listed:
  • Syeda Adila Afghan

    (Faculty of Informatics, University of Debrecen, Kassai útca 26, 4028 Debrecen, Hungary)

  • Husi Géza

    (Faculty of Engineering, Department of Mechatronics, University of Debrecen, Ótemető útca 2-4, 4028 Debrecen, Hungary)

Abstract

This paper presents a simulation-based study for characterizing and analyzing the performance of a commercially available thermoelectric cooler (TEC) as a generator for harvesting heat energy along with a commercial-off-the-shelf (COTS) power management integrated circuit (PMIC); LTC3108. In this model, the transformation of heat was considered in terms of an electrical circuit simulation perspective, where temperature experienced by TEC on both cold and hot sides was incorporated with voltage supply as Vth and Vtc in the circuit. When it comes to modeling a system in a simulation program with an integrated circuit emphasis (SPICE) like environment, the selection of thermoelectric generator (TEG) and extraction methods are not straightforward as well as the lack of information from manufacturer’s datasheets can limit the grip over the analysis parameters of the module. Therefore, it is mandatory to create a prototype before implementing it over a physical system for energy harvesting circuit (EHC) optimization. The major goal was to establish the basis for devising the thermal energy scavenging based Internet of Things (IoT) system with two configurations of voltage settings for the same TEG model. This study measured the data in terms of current, voltage, series of resistive loads and various temperature gradients for generating the required power. These generated power levels from EHC prototype were able to sustain the available IoT component’s power requirement, hence it could be considered for the implementation of IoT based applications.

Suggested Citation

  • Syeda Adila Afghan & Husi Géza, 2019. "Modelling and Analysis of Energy Harvesting in Internet of Things (IoT): Characterization of a Thermal Energy Harvesting Circuit for IoT based Applications with LTC3108," Energies, MDPI, vol. 12(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3873-:d:275997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saima Siouane & Slaviša Jovanović & Philippe Poure, 2017. "Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions," Energies, MDPI, vol. 10(3), pages 1-15, March.
    2. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Wu, Wangjie & Wang, Teng, 2023. "Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect," Applied Energy, Elsevier, vol. 331(C).
    2. Piotr Dziurdzia & Piotr Bratek & Michał Markiewicz, 2023. "An Efficient Electrothermal Model of a Thermoelectric Converter for a Thermal Energy Harvesting Process Simulation and Electronic Circuits Powering," Energies, MDPI, vol. 17(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Taemin & Ko, Youngsu & Lee, Younghun & Cha, Cheolung & Kim, Namsu, 2020. "Experimental analysis of flexible thermoelectric generators used for self-powered devices," Energy, Elsevier, vol. 200(C).
    2. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    3. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Meysam Karami Rad & Mahmoud Omid & Ali Rajabipour & Fariba Tajabadi & Lasse Aistrup Rosendahl & Alireza Rezaniakolaei, 2018. "Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition," Energies, MDPI, vol. 11(9), pages 1-16, September.
    5. Jian Li & Qingfeng Song & Ruiheng Liu & Hongliang Dong & Qihao Zhang & Xun Shi & Shengqiang Bai & Lidong Chen, 2022. "Thermoelectric Performance Optimization of n-Type La 3− x Sm x Te 4 /Ni Composites via Sm Doping," Energies, MDPI, vol. 15(7), pages 1-9, March.
    6. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    7. Cheng-Xian Lin & Robel Kiflemariam, 2019. "Numerical Simulation and Validation of Thermoeletric Generator Based Self-Cooling System with Airflow," Energies, MDPI, vol. 12(21), pages 1-21, October.
    8. Irene Cappelli & Stefano Parrino & Alessandro Pozzebon & Alessio Salta, 2021. "Providing Energy Self-Sufficiency to LoRaWAN Nodes by Means of Thermoelectric Generators (TEGs)-Based Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-17, November.
    9. Jianfeng Hong & Fu Chen & Ming He & Sheng Wang & Wenxiang Chen & Mingjie Guan, 2019. "Study of a Low-Power-Consumption Piezoelectric Energy Harvesting Circuit Based on Synchronized Switching Technology," Energies, MDPI, vol. 12(16), pages 1-13, August.
    10. Birol Kılkış, 2019. "Development of an Exergy-Rational Method and Optimum Control Algorithm for the Best Utilization of the Flue Gas Heat in Coal-Fired Power Plant Stacks," Energies, MDPI, vol. 12(4), pages 1-19, February.
    11. Siyang Li & Kwok Ho Lam & Ka Wai Eric Cheng, 2017. "The Thermoelectric Analysis of Different Heat Flux Conduction Materials for Power Generation Board," Energies, MDPI, vol. 10(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3873-:d:275997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.