IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3830-d274967.html
   My bibliography  Save this article

Performance Analysis of a Small-Scale Biogas-Based Trigeneration Plant: An Absorption Refrigeration System Integrated to an Externally Fired Microturbine

Author

Listed:
  • J. Villarroel-Schneider

    (Department of Energy Technology, School of Industrial Technology and Management (ITM), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
    Facultad de Ciencias y Tecnología (FCyT), Universidad Mayor de San Simón (UMSS), Cochabamba 2500, Bolivia)

  • Anders Malmquist

    (Department of Energy Technology, School of Industrial Technology and Management (ITM), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Joseph A. Araoz

    (Facultad de Ciencias y Tecnología (FCyT), Universidad Mayor de San Simón (UMSS), Cochabamba 2500, Bolivia)

  • J. Martí-Herrero

    (Biomass to Resources Group, Universidad Regional Amazónica Ikiam, Tena 150156, Ecuador
    Building Energy and Environment Group, Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Edifici GAIA (TR14), C/Rambla Sant Nebridi. 22, 08222 Terrassa, Barcelona, Spain)

  • Andrew Martin

    (Department of Energy Technology, School of Industrial Technology and Management (ITM), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

Abstract

Trigeneration or combined cooling, heat and power (CCHP) systems fueled by raw biogas can be an interesting alternative for supplying electricity and thermal services in remote rural areas where biogas can be produced without requiring sophisticated equipment. In this sense, this study considers a performance analysis of a novel small-scale CCHP system where a biogas-fired, 5 kW el externally fired microturbine (EFMT), an absorption refrigeration system (ARS) and heat exchangers are integrated for supplying electricity, refrigeration and hot water demanded by Bolivian small dairy farms. The CCHP solution presents two cases, current and nominal states, in which experimental and design data of the EFMT performance were considered, respectively. The primary energy/exergy rate was used as a performance indicator. The proposed cases show better energy performances than those of reference fossil fuel-based energy solutions (where energy services are produced separately) allowing savings in primary energy utilization of up to 31%. Furthermore, improvements in electric efficiency of the EFMT and coefficient of performance (COP) of the ARS, identified as key variables of the system, allow primary energy savings of up to 37%. However, to achieve these values in real conditions, more research and development of the technologies involved is required, especially for the EFMT.

Suggested Citation

  • J. Villarroel-Schneider & Anders Malmquist & Joseph A. Araoz & J. Martí-Herrero & Andrew Martin, 2019. "Performance Analysis of a Small-Scale Biogas-Based Trigeneration Plant: An Absorption Refrigeration System Integrated to an Externally Fired Microturbine," Energies, MDPI, vol. 12(20), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3830-:d:274967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    2. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    3. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.
    4. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    5. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    6. Cocco, Daniele & Deiana, Paolo & Cau, Giorgio, 2006. "Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers," Energy, Elsevier, vol. 31(10), pages 1459-1471.
    7. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    8. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    9. Murugan, S. & Horák, Bohumil, 2016. "Tri and polygeneration systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1032-1051.
    10. Bruno, Joan Carles & Ortega-López, Víctor & Coronas, Alberto, 2009. "Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant," Applied Energy, Elsevier, vol. 86(6), pages 837-847, June.
    11. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    12. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    13. Anand, S. & Gupta, A. & Tyagi, S.K., 2013. "Simulation studies of refrigeration cycles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 260-277.
    14. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    15. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    16. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gheorghe Dumitrașcu & Michel Feidt & Ştefan Grigorean, 2021. "Finite Physical Dimensions Thermodynamics Analysis and Design of Closed Irreversible Cycles," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    3. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    2. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    3. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Urbanucci, Luca & Bruno, Joan Carles & Testi, Daniele, 2019. "Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems," Applied Energy, Elsevier, vol. 238(C), pages 516-533.
    5. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    6. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    7. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Wegener, Moritz & Villarroel Schneider, J. & Malmquist, Anders & Isalgue, Antonio & Martin, Andrew & Martin, Viktoria, 2021. "Techno-economic optimization model for polygeneration hybrid energy storage systems using biogas and batteries," Energy, Elsevier, vol. 218(C).
    9. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    11. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    12. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    13. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    14. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    15. David Vera & Francisco Jurado & Bárbara de Mena & Jesús C. Hernández, 2019. "A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes," Energies, MDPI, vol. 12(3), pages 1-18, February.
    16. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    17. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    18. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
    19. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2019. "Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design," Energy, Elsevier, vol. 189(C).
    20. Muhammad Tauseef Nasir & Michael Chukwuemeka Ekwonu & Yoonseong Park & Javad Abolfazli Esfahani & Kyung Chun Kim, 2021. "Assessment of a District Trigeneration Biomass Powered Double Organic Rankine Cycle as Primed Mover and Supported Cooling," Energies, MDPI, vol. 14(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3830-:d:274967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.