IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3627-d269945.html
   My bibliography  Save this article

Carbon and Water Footprint of Energy Saving Options for the Air Conditioning of Electric Cabins at Industrial Sites

Author

Listed:
  • Maurizio Santin

    (Dipartimento Politecnico di Ingegneria e Architettura (DPIA), University of Udine, Via delle Scienze 206, 33100 Udine (UD), Italy)

  • Damiana Chinese

    (Dipartimento Politecnico di Ingegneria e Architettura (DPIA), University of Udine, Via delle Scienze 206, 33100 Udine (UD), Italy)

  • Onorio Saro

    (Dipartimento Politecnico di Ingegneria e Architettura (DPIA), University of Udine, Via delle Scienze 206, 33100 Udine (UD), Italy)

  • Alessandra De Angelis

    (Dipartimento Politecnico di Ingegneria e Architettura (DPIA), University of Udine, Via delle Scienze 206, 33100 Udine (UD), Italy)

  • Alberto Zugliano

    (Danieli & C. Officine Meccaniche S.p.A., Via Nazionale, 41, 33042 Buttrio (UD), Italy)

Abstract

Modern electric and electronic equipment in energy-intensive industries, including electric steelmaking plants, are often housed in outdoor cabins. In a similar manner as data centres, such installations must be air conditioned to remove excess heat and to avoid damage to electric components. Cooling systems generally display a water–energy nexus behaviour, mainly depending on associated heat dissipation systems. Hence, it is desirable to identify configurations achieving both water and energy savings for such installations. This paper compares two alternative energy-saving configurations for air conditioning electric cabins at steelmaking sites—that is, an absorption cooling based system exploiting industrial waste heat, and an airside free-cooling-based system—against the traditional configuration. All systems were combined with either dry coolers or cooling towers for heat dissipation. We calculated water and carbon footprint indicators, primary energy demand and economic indicators by building a TRNSYS simulation model of the systems and applying it to 16 worldwide ASHRAE climate zones. In nearly all conditions, waste-heat recovery-based solutions were found to outperform both the baseline and the proposed free-cooling solution regarding energy demand and carbon footprint. When cooling towers were used, free cooling was a better option in terms water footprint in cold climates.

Suggested Citation

  • Maurizio Santin & Damiana Chinese & Onorio Saro & Alessandra De Angelis & Alberto Zugliano, 2019. "Carbon and Water Footprint of Energy Saving Options for the Air Conditioning of Electric Cabins at Industrial Sites," Energies, MDPI, vol. 12(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3627-:d:269945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chinese, Damiana & Santin, Maurizio & Saro, Onorio, 2017. "Water-energy and GHG nexus assessment of alternative heat recovery options in industry: A case study on electric steelmaking in Europe," Energy, Elsevier, vol. 141(C), pages 2670-2687.
    2. Johansson, Maria T. & Söderström, Mats, 2011. "Options for the Swedish steel industry – Energy efficiency measures and fuel conversion," Energy, Elsevier, vol. 36(1), pages 191-198.
    3. Tom Waas & Jean Huge & Thomas BLOCK & Tarah Wright & Francisco Javier Benitez Capistros & Aviel Verbruggen, 2014. "Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development," ULB Institutional Repository 2013/189410, ULB -- Universite Libre de Bruxelles.
    4. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    5. Wilby, Mark Richard & Rodríguez González, Ana Belén & Vinagre Díaz, Juan José, 2014. "Empirical and dynamic primary energy factors," Energy, Elsevier, vol. 73(C), pages 771-779.
    6. Sun, Jian & Fu, Lin & Zhang, Shigang, 2012. "A review of working fluids of absorption cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1899-1906.
    7. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    8. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    9. Tom Waas & Jean Hugé & Thomas Block & Tarah Wright & Francisco Benitez-Capistros & Aviel Verbruggen, 2014. "Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development," Sustainability, MDPI, vol. 6(9), pages 1-23, August.
    10. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    11. Arshi Banu, P.S. & Sudharsan, N.M., 2018. "Review of water based vapour absorption cooling systems using thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3750-3761.
    12. Jiangjiang Wang & Rujing Yan & Zhuang Wang & Xutao Zhang & Guohua Shi, 2018. "Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors," Energies, MDPI, vol. 11(10), pages 1-17, October.
    13. Lin, Yi-Pin & Wang, Wen-Hsian & Pan, Shu-Yuan & Ho, Chang-Ching & Hou, Chin-Jen & Chiang, Pen-Chi, 2016. "Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry," Applied Energy, Elsevier, vol. 183(C), pages 369-379.
    14. Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2016. "Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration," Applied Energy, Elsevier, vol. 184(C), pages 1350-1363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maytungkorn Sermsuk & Yanin Sukjai & Montri Wiboonrat & Kunlanan Kiatkittipong, 2021. "Utilising Cold Energy from Liquefied Natural Gas (LNG) to Reduce the Electricity Cost of Data Centres," Energies, MDPI, vol. 14(19), pages 1-17, October.
    2. Michele Libralato & Giovanni Murano & Alessandra De Angelis & Onorio Saro & Vincenzo Corrado, 2020. "Influence of the Meteorological Record Length on the Generation of Representative Weather Files," Energies, MDPI, vol. 13(8), pages 1-19, April.
    3. Sermsuk, Maytungkorn & Sukjai, Yanin & Wiboonrat, Montri & Kiatkittipong, Kunlanan, 2022. "Feasibility study of a combined system of electricity generation and cooling from liquefied natural gas to reduce the electricity cost of data centres," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justyna Patalas-Maliszewska & Hanna Łosyk, 2020. "An Approach to Assessing Sustainability in the Development of a Manufacturing Company," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    2. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    3. María Luisa Pajuelo Moreno & Teresa Duarte-Atoche, 2019. "Relationship between Sustainable Disclosure and Performance—An Extension of Ullmann’s Model," Sustainability, MDPI, vol. 11(16), pages 1-33, August.
    4. Weiwei Li & Pingtao Yi & Danning Zhang, 2018. "Sustainability Evaluation of Cities in Northeastern China Using Dynamic TOPSIS-Entropy Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    5. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    6. Svatava Janoušková & Tomáš Hák & Bedřich Moldan, 2018. "Global SDGs Assessments: Helping or Confusing Indicators?," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    7. Jean Hugé & Nibedita Mukherjee & Camille Fertel & Jean-Philippe Waaub & Thomas Block & Tom Waas & Nico Koedam & Farid Dahdouh-Guebas, 2015. "Conceptualizing the Effectiveness of Sustainability Assessment in Development Cooperation," Sustainability, MDPI, vol. 7(5), pages 1-17, May.
    8. Kajsa Borgnäs, 2017. "Indicators as ‘circular argumentation constructs’? An input–output analysis of the variable structure of five environmental sustainability country rankings," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 769-790, June.
    9. Catherine Dezio & Davide Marino, 2018. "Towards an Impact Evaluation Framework to Measure Urban Resilience in Food Practices," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
    10. Marcellinus Essah, 2022. "Gold mining in Ghana and the UN Sustainable Development Goals: Exploring community perspectives on social and environmental injustices," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 127-138, February.
    11. Vicent Penadés-Plà & José V. Martí & Tatiana García-Segura & Víctor Yepes, 2017. "Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges," Sustainability, MDPI, vol. 9(10), pages 1-21, October.
    12. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    13. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    15. Małgorzata Ćwikła & Anna Góral & Ewa Bogacz-Wojtanowska & Magdalena Dudkiewicz, 2020. "Project-Based Work and Sustainable Development—A Comparative Case Study of Cultural Animation Projects," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    16. Tobias Engelmann & Daniel Fischer & Marianne Lörchner & Jaya Bowry & Holger Rohn, 2019. "“Doing” Sustainability Assessment in Different Consumption and Production Contexts—Lessons from Case Study Comparison," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    17. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    18. Nomeda Dobrovolskienė & Anastasija Pozniak & Manuela Tvaronavičienė, 2021. "Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    19. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    20. Pedro Mauricio Acosta Castellanos & Araceli Queiruga-Dios & Ascensión Hernández Encinas & Libia Cristina Acosta, 2020. "Environmental Education in Environmental Engineering: Analysis of the Situation in Colombia and Latin America," Sustainability, MDPI, vol. 12(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3627-:d:269945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.