IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3161-d258415.html
   My bibliography  Save this article

Establishment, Validation, and Application of a Comprehensive Thermal Hydraulic Model for a Parabolic Trough Solar Field

Author

Listed:
  • Linrui Ma

    (Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, Beijing 100190, China
    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    Institute of Electrical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    Beijing Engineering Research Center of Solar Thermal Power, Beijing 100190, China)

  • Zhifeng Wang

    (Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, Beijing 100190, China
    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    Beijing Engineering Research Center of Solar Thermal Power, Beijing 100190, China)

  • Dongqiang Lei

    (Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, Beijing 100190, China
    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    Beijing Engineering Research Center of Solar Thermal Power, Beijing 100190, China)

  • Li Xu

    (Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, Beijing 100190, China
    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    Beijing Engineering Research Center of Solar Thermal Power, Beijing 100190, China)

Abstract

To better understand the thermal hydraulic characteristics of the parabolic trough solar field (PTSF), a comprehensive thermal hydraulic model (CTHM) based on a pilot plant is developed in this paper. All of the main components and thermal and hydraulic transients are considered in the CTHM, and the input parameters of the model are no longer dependent on the total flow rate. In this paper, we solve the CTHM by a novel numerical approach based on graph theory and the Newton-Raphson method, and then examine it by two tests conducted based on a pilot plant. Comparing the flow rate, temperature, and pressure drop results show good agreement and further validate the availability and accuracy of the CTHM under hydraulic and thermal disturbance. Besides, two applications of the CTHM are implemented for presenting its potential function. In the first application, two cases are simulated to reveal how the thermal effects influence the PTSF behavior, and in the second application, the CHTF is used for the study of control strategies under uniform and nonuniform solar irradiance. The results verify the feasibility of controlling the PTSF outlet temperature through the header and loop valves.

Suggested Citation

  • Linrui Ma & Zhifeng Wang & Dongqiang Lei & Li Xu, 2019. "Establishment, Validation, and Application of a Comprehensive Thermal Hydraulic Model for a Parabolic Trough Solar Field," Energies, MDPI, vol. 12(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3161-:d:258415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Linrui & Xu, Ershu & Li, Jun & Xu, Li & Li, Xiaolei, 2018. "Analysis and validation of a thermal hydraulic dynamic model for the parabolic trough solar field," Energy, Elsevier, vol. 156(C), pages 430-443.
    2. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    3. Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
    4. Zhao, Dongming & Xu, Ershu & Wang, Zhifeng & Yu, Qiang & Xu, Li & Zhu, Lingzhi, 2016. "Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector," Renewable Energy, Elsevier, vol. 94(C), pages 197-212.
    5. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Janusz Teleszewski & Mirosław Żukowski & Dorota Anna Krawczyk & Antonio Rodero, 2021. "Analysis of the Applicability of the Parabolic Trough Solar Thermal Power Plants in the Locations with a Temperate Climate," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Zhiying Cui & Fengwu Bai & Zhifeng Wang & Fuqiang Wang, 2019. "Influences of Optical Factors on the Performance of the Solar Furnace," Energies, MDPI, vol. 12(20), pages 1-18, October.
    3. Fangyuan Yao & Dongqiang Lei & Ke Yu & Yingying Han & Pan Yao & Zhifeng Wang & Quanxi Fang & Qiao Hu, 2019. "Experimental Study on Vacuum Performance of Parabolic Trough Receivers based on a Novel Non-destructive Testing Method," Energies, MDPI, vol. 12(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    3. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
    4. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    6. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    7. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    8. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    9. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    10. Amit K. Bhakta & Nitesh K. Panday & Shailendra N. Singh, 2018. "Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube," Energies, MDPI, vol. 11(1), pages 1-15, January.
    11. Wang, Dongxu & Zhang, Yiqun & Chen, Guangda & Fan, Guanheng & Li, Xintong & Du, Yingchun, 2023. "Analysis of space-based large light concentration reflective surfaces with errors," Renewable Energy, Elsevier, vol. 216(C).
    12. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
    13. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    14. Sau, S. & Corsaro, N. & Crescenzi, T. & D’Ottavi, C. & Liberatore, R. & Licoccia, S. & Russo, V. & Tarquini, P. & Tizzoni, A.C., 2016. "Techno-economic comparison between CSP plants presenting two different heat transfer fluids," Applied Energy, Elsevier, vol. 168(C), pages 96-109.
    15. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Yin, Baoquan & Wu, Xiaoting, 2018. "Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China," Applied Energy, Elsevier, vol. 221(C), pages 100-111.
    16. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    17. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    18. Zou, Bin & Yao, Yang & Jiang, Yiqiang & Yang, Hongxing, 2018. "A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors," Energy, Elsevier, vol. 150(C), pages 451-467.
    19. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    20. Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3161-:d:258415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.