IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2175-d237944.html
   My bibliography  Save this article

A General Intelligent Optimization Algorithm Combination Framework with Application in Economic Load Dispatch Problems

Author

Listed:
  • Jinghua Zhang

    (Hebei Engineering Research Center of Simulation Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China)

  • Ze Dong

    (Hebei Engineering Research Center of Simulation Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China)

Abstract

Recently, a population-based intelligent optimization algorithm research has been combined with multiple algorithms or algorithm components in order to improve the performance and robustness of an optimization algorithm. This paper introduces the idea into real world application. Different from traditional algorithm research, this paper implements this idea as a general framework. The combination of multiple algorithms or algorithm components is regarded as a complex multi-behavior population, and a unified multi-behavior combination model is proposed. A general agent-based algorithm framework is designed to support the model, and various multi-behavior combination algorithms can be customized under the framework. Then, the paper customizes a multi-behavior combination algorithm and applies the algorithm to solve the economic load dispatch problems. The algorithm has been tested with four test systems. The test results prove that the multi-behavior combination idea is meaningful which also indicates the significance of the framework.

Suggested Citation

  • Jinghua Zhang & Ze Dong, 2019. "A General Intelligent Optimization Algorithm Combination Framework with Application in Economic Load Dispatch Problems," Energies, MDPI, vol. 12(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2175-:d:237944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiangtao Yu & Chang-Hwan Kim & Abdul Wadood & Tahir Khurshiad & Sang-Bong Rhee, 2018. "A Novel Multi-Population Based Chaotic JAYA Algorithm with Application in Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 11(8), pages 1-25, July.
    2. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    2. Xiaobing Yu & Xianrui Yu & Yiqun Lu & Jichuan Sheng, 2018. "Economic and Emission Dispatch Using Ensemble Multi-Objective Differential Evolution Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    3. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    4. Héctor Migallón & Akram Belazi & José-Luis Sánchez-Romero & Héctor Rico & Antonio Jimeno-Morenilla, 2020. "Settings-Free Hybrid Metaheuristic General Optimization Methods," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    5. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    6. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    7. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    8. Jorge Pérez-Aracil & Carlos Camacho-Gómez & Eugenio Lorente-Ramos & Cosmin M. Marina & Laura M. Cornejo-Bueno & Sancho Salcedo-Sanz, 2023. "New Probabilistic, Dynamic Multi-Method Ensembles for Optimization Based on the CRO-SL," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    9. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    10. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    11. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    12. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    13. Hadidi, Amin, 2015. "A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm," Applied Energy, Elsevier, vol. 150(C), pages 196-210.
    14. Xu Chen & Bin Xu & Wenli Du, 2018. "An Improved Particle Swarm Optimization with Biogeography-Based Learning Strategy for Economic Dispatch Problems," Complexity, Hindawi, vol. 2018, pages 1-15, July.
    15. Ahmadigorji, Masoud & Amjady, Nima, 2015. "Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach," Applied Energy, Elsevier, vol. 156(C), pages 655-665.
    16. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    17. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    18. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    19. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    20. Alaa A. K. Ismaeel & Essam H. Houssein & Doaa Sami Khafaga & Eman Abdullah Aldakheel & Ahmed S. AbdElrazek & Mokhtar Said, 2023. "Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem," Mathematics, MDPI, vol. 11(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2175-:d:237944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.