IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2133-d164017.html
   My bibliography  Save this article

Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries

Author

Listed:
  • Vaclav Knap

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Daniel J. Auger

    (School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK)

  • Karsten Propp

    (School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK)

  • Abbas Fotouhi

    (School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK)

  • Daniel-Ioan Stroe

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Lithium-sulfur (Li-S) batteries are an emerging energy storage technology with higher performance than lithium-ion batteries in terms of specific capacity and energy density. However, several scientific and technological gaps need to be filled before Li-S batteries will penetrate the market at a large scale. One such gap, which is tackled in this paper, is represented by the estimation of state-of-health (SOH). Li-S batteries exhibit a complex behaviour due to their inherent mechanisms, which requires a special tailoring of the already literature-available state-of-charge (SOC) and SOH estimation algorithms. In this work, a model of SOH based on capacity fade and power fade has been proposed and incorporated in a state estimator using dual extended Kalman filters has been used to simultaneously estimate Li-S SOC and SOH. The dual extended Kalman filter’s internal estimates of equivalent circuit network parameters have also been used to the estimate maximum available power of the battery at any specified instant. The proposed estimators have been successfully applied to both fresh and aged Li-S pouch cells, showing that they can accurately track accurately the battery SOC, SOH, and power, providing that initial conditions are suitable. However, the estimation of the Li-S battery cells’ capacity fade is shown to be more complex, because the practical available capacity varies highly with the applied current rates and the dynamics of the mission profile.

Suggested Citation

  • Vaclav Knap & Daniel J. Auger & Karsten Propp & Abbas Fotouhi & Daniel-Ioan Stroe, 2018. "Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries," Energies, MDPI, vol. 11(8), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2133-:d:164017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    2. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    4. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    5. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    6. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    7. Zhang, Cetengfei & Zhou, Quan & Hua, Min & Xu, Hongming & Bassett, Mike & Zhang, Fanggang, 2023. "Cuboid equivalent consumption minimization strategy for energy management of multi-mode plug-in hybrid vehicles considering diverse time scale objectives," Applied Energy, Elsevier, vol. 351(C).
    8. Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
    9. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Prakash Venugopal & Vigneswaran T., 2019. "State-of-Health Estimation of Li-ion Batteries in Electric Vehicle Using IndRNN under Variable Load Condition," Energies, MDPI, vol. 12(22), pages 1-29, November.
    11. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    12. Bohan Shao & Jun Zhong & Jie Tian & Yan Li & Xiyu Chen & Weilin Dou & Qiangqiang Liao & Chunyan Lai & Taolin Lu & Jingying Xie, 2025. "State-of-Health Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy Features and Fusion Interpretable Deep Learning Framework," Energies, MDPI, vol. 18(6), pages 1-25, March.
    13. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    14. Pei, Pucheng & Zhou, Qibin & Wu, Lei & Wu, Ziyao & Hua, Jianfeng & Fan, Huimin, 2020. "Capacity estimation for lithium-ion battery using experimental feature interval approach," Energy, Elsevier, vol. 203(C).
    15. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    16. Chi Zhang & Fuwu Yan & Changqing Du & Jianqiang Kang & Richard Fiifi Turkson, 2017. "Evaluating the Degradation Mechanism and State of Health of LiFePO 4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths," Energies, MDPI, vol. 10(1), pages 1-13, January.
    17. Mamun, A. & Sivasubramaniam, A. & Fathy, H.K., 2018. "Collective learning of lithium-ion aging model parameters for battery health-conscious demand response in datacenters," Energy, Elsevier, vol. 154(C), pages 80-95.
    18. Du, Jiuyu & Ouyang, Minggao & Chen, Jingfu, 2017. "Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality," Energy, Elsevier, vol. 120(C), pages 584-596.
    19. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
    20. AbdulRahman Salem & Basil M. Darras & Mohammad Nazzal, 2025. "Framework for Selecting the Most Effective State of Health Method for Second-Life Lithium-Ion Batteries: A Scientometric and Multi-Criteria Decision Matrix Approach," Energies, MDPI, vol. 18(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2133-:d:164017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.