IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2118-d163717.html
   My bibliography  Save this article

Auto-Adaptive Filtering-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles

Author

Listed:
  • Jamila Snoussi

    (National Engineering School of Monastir (ENIM), Monastir University, Monastir 5000, Tunisia)

  • Seifeddine Ben Elghali

    (Laboratory of Information and Systems (UMR CNRS 7020 LIS), Aix-Marseille University, Marseille 13397, France)

  • Mohamed Benbouzid

    (Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), University of Brest, Brest 29238, France and with the Shanghai Maritime University, Shanghai 201306, China)

  • Mohamed Faouzi Mimouni

    (National Engineering School of Monastir (ENIM), Monastir University, Monastir 5000, Tunisia)

Abstract

The global need to solve pollution problems has conducted automotive engineers to promote the development and the use of electric vehicle technologies. This paper focuses on the fuel cell hybrid electric vehicle which uses a proton exchange membrane fuel cell as a main source associated to hybrid storage device: lithium ion battery and ultracapacitors. A common interest in such technology is to spread out the energy flow between its different sources in order to satisfy the power demand for any requested mission. However, the challenging task stills the optimization of this split to reduce hydrogen consumption and respect, at the same time, the system limitations such as admissible limits of storage system capacities and battery current variation. An adaptive filtering-based energy management strategy is proposed in this paper to ensure an optimum distribution of the energy between the sources taking into account dynamic and energetic constraints of each device. For more performance, a fuzzy logic system is used to adapt the frequency of separation with the system state evolution. A sliding mode control is applied to control electric characteristics (voltage and currents) in the considered hybrid power supply. Simulation results, obtained under MATLAB ® /SimPowerSystems ® for four driving cycles are presented. The proposed strategy achieved good performances by respecting the ultracapacitors state of charge while preserving the battery lifetime under various driving missions.

Suggested Citation

  • Jamila Snoussi & Seifeddine Ben Elghali & Mohamed Benbouzid & Mohamed Faouzi Mimouni, 2018. "Auto-Adaptive Filtering-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2118-:d:163717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    2. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Majlan, E.H. & Wan Daud, W.R., 2015. "A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 802-814.
    3. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    4. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    5. Li, Maobing & Xu, Hui & Li, Weimin & Liu, Yin & Li, Fade & Hu, Yue & Liu, Li, 2016. "The structure and control method of hybrid power source for electric vehicle," Energy, Elsevier, vol. 112(C), pages 1273-1285.
    6. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    7. Lim, KaiChin & Bastawrous, Hany Ayad & Duong, Van-Huan & See, Khay Wai & Zhang, Peng & Dou, Shi Xue, 2016. "Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles," Applied Energy, Elsevier, vol. 169(C), pages 40-48.
    8. Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
    9. Herrera, Victor & Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Villarreal, Igor & Camblong, Haritza, 2016. "Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway," Applied Energy, Elsevier, vol. 169(C), pages 831-845.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail Oukkacha & Cheikh Tidiane Sarr & Mamadou Baïlo Camara & Brayima Dakyo & Jean Yves Parédé, 2021. "Energetic Performances Booster for Electric Vehicle Applications Using Transient Power Control and Supercapacitors-Batteries/Fuel Cell," Energies, MDPI, vol. 14(8), pages 1-22, April.
    2. Hoai-Linh T. Nguyen & Bảo-Huy Nguyễn & Thanh Vo-Duy & João Pedro F. Trovão, 2021. "A Comparative Study of Adaptive Filtering Strategies for Hybrid Energy Storage Systems in Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-23, June.
    3. Krisztián Kun & Lóránt Szabó & Erika Varga & Dávid István Kis, 2024. "Development of a Hydrogen Fuel Cell Prototype Vehicle Supported by Artificial Intelligence for Green Urban Transport," Energies, MDPI, vol. 17(7), pages 1-17, March.
    4. Mehdi Sellali & Alexandre Ravey & Achour Betka & Abdellah Kouzou & Mohamed Benbouzid & Abdesslem Djerdir & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 15(4), pages 1-17, February.
    5. Vishnu P. Sidharthan & Yashwant Kashyap & Panagiotis Kosmopoulos, 2023. "Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles," Energies, MDPI, vol. 16(3), pages 1-26, January.
    6. Mohsen Kandidayeni & Alvaro Macias & Loïc Boulon & João Pedro F. Trovão, 2020. "Online Modeling of a Fuel Cell System for an Energy Management Strategy Design," Energies, MDPI, vol. 13(14), pages 1-17, July.
    7. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    8. Zhiwen Zhang & Jie Tang & Jiyuan Zhang & Tianci Zhang, 2024. "Research on Energy Hierarchical Management and Optimal Control of Compound Power Electric Vehicle," Energies, MDPI, vol. 17(6), pages 1-22, March.
    9. Carmen Raga & Andres Barrado & Henry Miniguano & Antonio Lazaro & Isabel Quesada & Alberto Martin-Lozano, 2018. "Analysis and Sizing of Power Distribution Architectures Applied to Fuel Cell Based Vehicles," Energies, MDPI, vol. 11(10), pages 1-30, September.
    10. Ahmed Al Amerl & Ismail Oukkacha & Mamadou Baïlo Camara & Brayima Dakyo, 2021. "Real-Time Control Strategy of Fuel Cell and Battery System for Electric Hybrid Boat Application," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    11. Wang, Yichun & Zhang, Yuanzhi & Zhang, Caizhi & Zhou, Jiaming & Hu, Donghai & Yi, Fengyan & Fan, Zhixian & Zeng, Tao, 2023. "Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition," Energy, Elsevier, vol. 263(PF).
    12. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
    13. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    14. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    15. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    2. Asensio, E. Maximiliano & Magallán, Guillermo A. & Pérez, Laura & De Angelo, Cristian H., 2022. "Short-term power demand prediction for energy management of an electric vehicle based on batteries and ultracapacitors," Energy, Elsevier, vol. 247(C).
    3. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    5. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    6. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
    7. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    8. Ruan, Jiageng & Song, Qiang & Yang, Weiwei, 2019. "The application of hybrid energy storage system with electrified continuously variable transmission in battery electric vehicle," Energy, Elsevier, vol. 183(C), pages 315-330.
    9. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Hsieh, Chuang-Yu & Pei, Pucheng & Bai, Qiang & Su, Ay & Weng, Fang-Bor & Lee, Chi-Yuan, 2021. "Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts," Energy, Elsevier, vol. 214(C).
    11. Cong Zhang & Dai Wang & Bin Wang & Fan Tong, 2020. "Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles," Energies, MDPI, vol. 13(1), pages 1-21, January.
    12. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    13. Nguyễn, Bảo-Huy & Vo-Duy, Thanh & Henggeler Antunes, Carlos & Trovão, João Pedro F., 2021. "Multi-objective benchmark for energy management of dual-source electric vehicles: An optimal control approach," Energy, Elsevier, vol. 223(C).
    14. Yang, Weiwei & Ruan, Jiageng & Yang, Jue & Zhang, Nong, 2020. "Investigation of integrated uninterrupted dual input transmission and hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    15. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    16. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    17. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    18. Juhui Gim & Minsu Kim & Changsun Ahn, 2022. "Energy Management Control Strategy for Saving Trip Costs of Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-15, March.
    19. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    20. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2118-:d:163717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.