IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p179-d126515.html
   My bibliography  Save this article

Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

Author

Listed:
  • J.-K. Mueller

    (Institute for Drive Systems and Power Electronics, Leibniz Universität Hannover, 30167 Hannover, Germany
    These authors contributed equally to this work.)

  • A. Bensmann

    (Institute of Electric Power Systems, Leibniz Universität Hannover, 30167 Hannover, Germany
    These authors contributed equally to this work.)

  • B. Bensmann

    (Institute of Electric Power Systems, Leibniz Universität Hannover, 30167 Hannover, Germany
    These authors contributed equally to this work.)

  • T. Fischer

    (Institute of Turbomachinery and Fluid Dynamics, Leibniz Universität Hannover, 30167 Hannover, Germany
    These authors contributed equally to this work.)

  • T. Kadyk

    (Institute of Energy and Systems Engineering, TU Braunschweig, 38106 Braunschweig, Germany
    These authors contributed equally to this work.)

  • G. Narjes

    (Institute for Drive Systems and Power Electronics, Leibniz Universität Hannover, 30167 Hannover, Germany
    These authors contributed equally to this work.)

  • F. Kauth

    (Institute of Turbomachinery and Fluid Dynamics, Leibniz Universität Hannover, 30167 Hannover, Germany
    These authors contributed equally to this work.)

  • B. Ponick

    (Institute for Drive Systems and Power Electronics, Leibniz Universität Hannover, 30167 Hannover, Germany)

  • J. R. Seume

    (Institute of Turbomachinery and Fluid Dynamics, Leibniz Universität Hannover, 30167 Hannover, Germany)

  • U. Krewer

    (Institute of Energy and Systems Engineering, TU Braunschweig, 38106 Braunschweig, Germany)

  • R. Hanke-Rauschenbach

    (Institute of Electric Power Systems, Leibniz Universität Hannover, 30167 Hannover, Germany)

  • A. Mertens

    (Institute for Drive Systems and Power Electronics, Leibniz Universität Hannover, 30167 Hannover, Germany)

Abstract

Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

Suggested Citation

  • J.-K. Mueller & A. Bensmann & B. Bensmann & T. Fischer & T. Kadyk & G. Narjes & F. Kauth & B. Ponick & J. R. Seume & U. Krewer & R. Hanke-Rauschenbach & A. Mertens, 2018. "Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems," Energies, MDPI, vol. 11(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:179-:d:126515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Guizhou & Ma, Guoqing & Cong, Ning, 2015. "Review of electrical energy storage system for vehicular applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 225-236.
    2. Christopher Winnefeld & Thomas Kadyk & Boris Bensmann & Ulrike Krewer & Richard Hanke-Rauschenbach, 2018. "Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications," Energies, MDPI, vol. 11(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Zeeshan Malik & Haoyong Chen & Muhammad Shahzad Nazir & Irfan Ahmad Khan & Ahmed N. Abdalla & Amjad Ali & Wan Chen, 2020. "A New Efficient Step-Up Boost Converter with CLD Cell for Electric Vehicle and New Energy Systems," Energies, MDPI, vol. 13(7), pages 1-14, April.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Maršenka Marksel & Anita Prapotnik Brdnik, 2023. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    4. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    5. Pavlos Rompokos & Sajal Kissoon & Ioannis Roumeliotis & Devaiah Nalianda & Theoklis Nikolaidis & Andrew Rolt, 2020. "Liquefied Natural Gas for Civil Aviation," Energies, MDPI, vol. 13(22), pages 1-20, November.
    6. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    7. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    8. M׳boungui, G. & Adendorff, K. & Naidoo, R. & Jimoh, A.A. & Okojie, D.E., 2015. "A hybrid piezoelectric micro-power generator for use in low power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1136-1144.
    9. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    10. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    11. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    12. Jonas Mangold & Daniel Silberhorn & Nicolas Moebs & Niclas Dzikus & Julian Hoelzen & Thomas Zill & Andreas Strohmayer, 2022. "Refueling of LH2 Aircraft—Assessment of Turnaround Procedures and Aircraft Design Implication," Energies, MDPI, vol. 15(7), pages 1-41, March.
    13. Thomas Kadyk & Christopher Winnefeld & Richard Hanke-Rauschenbach & Ulrike Krewer, 2018. "Analysis and Design of Fuel Cell Systems for Aviation," Energies, MDPI, vol. 11(2), pages 1-15, February.
    14. Andriy Chaban & Zbigniew Lukasik & Marek Lis & Andrzej Szafraniec, 2020. "Mathematical Modeling of Transient Processes in Magnetic Suspension of Maglev Trains," Energies, MDPI, vol. 13(24), pages 1-17, December.
    15. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    16. Yanzi Wang & Weida Wang & Yulong Zhao & Lei Yang & Wenjun Chen, 2016. "A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems," Energies, MDPI, vol. 9(1), pages 1-20, January.
    17. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    18. Datas, Alejandro & Ramos, Alba & Martí, Antonio & del Cañizo, Carlos & Luque, Antonio, 2016. "Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion," Energy, Elsevier, vol. 107(C), pages 542-549.
    19. Yuanliang Liu & Yinan Qiu & Zhan Liu & Gang Lei, 2022. "Modeling and Analysis of the Flow Characteristics of Liquid Hydrogen in a Pipe Suffering from External Transient Impact," Energies, MDPI, vol. 15(11), pages 1-12, June.
    20. Mousavi G, S.M. & Faraji, Faramarz & Majazi, Abbas & Al-Haddad, Kamal, 2017. "A comprehensive review of Flywheel Energy Storage System technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 477-490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:179-:d:126515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.