IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3526-d191428.html
   My bibliography  Save this article

Solving the Energy Efficient Coverage Problem in Wireless Sensor Networks: A Distributed Genetic Algorithm Approach with Hierarchical Fitness Evaluation

Author

Listed:
  • Zi-Jia Wang

    (School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China)

  • Zhi-Hui Zhan

    (Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China)

  • Jun Zhang

    (Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China)

Abstract

This paper proposed a distributed genetic algorithm (DGA) to solve the energy efficient coverage (EEC) problem in the wireless sensor networks (WSN). Due to the fact that the EEC problem is Non-deterministic Polynomial-Complete (NPC) and time-consuming, it is wise to use a nature-inspired meta-heuristic DGA approach to tackle this problem. The novelties and advantages in designing our approach and in modeling the EEC problems are as the following two aspects. Firstly, in the algorithm design, we realized DGA in the multi-processor distributed environment, where a set of processors run distributed to evaluate the fitness values in parallel to reduce the computational cost. Secondly, when we evaluate a chromosome, different from the traditional model of EEC problem in WSN that only calculates the number of disjoint sets, we proposed a hierarchical fitness evaluation and constructed a two-level fitness function to count the number of disjoint sets and the coverage performance of all the disjoint sets. Therefore, not only do we have the innovations in algorithm, but also have the contributions on the model of EEC problem in WSN. The experimental results show that our proposed DGA performs better than other state-of-the-art approaches in maximizing the number of disjoin sets.

Suggested Citation

  • Zi-Jia Wang & Zhi-Hui Zhan & Jun Zhang, 2018. "Solving the Energy Efficient Coverage Problem in Wireless Sensor Networks: A Distributed Genetic Algorithm Approach with Hierarchical Fitness Evaluation," Energies, MDPI, vol. 11(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3526-:d:191428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Ahmed Ahmed Al-Jaoufi & Yun Liu & Zhenjiang Zhang, 2018. "An Active Defense Model with Low Power Consumption and Deviation for Wireless Sensor Networks Utilizing Evolutionary Game Theory," Energies, MDPI, vol. 11(5), pages 1-16, May.
    2. Hisham A. Shehadeh & Mohd Yamani Idna Idris & Ismail Ahmedy & Roziana Ramli & Noorzaily Mohamed Noor, 2018. "The Multi-Objective Optimization Algorithm Based on Sperm Fertilization Procedure (MOSFP) Method for Solving Wireless Sensor Networks Optimization Problems in Smart Grid Applications," Energies, MDPI, vol. 11(1), pages 1-35, January.
    3. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    4. Aqeb Yahya & Saif Ul Islam & Adnan Akhunzada & Ghufran Ahmed & Shahaboddin Shamshirband & Jaime Lloret, 2018. "Towards Efficient Sink Mobility in Underwater Wireless Sensor Networks," Energies, MDPI, vol. 11(6), pages 1-12, June.
    5. Nikos Kampelis & Elisavet Tsekeri & Dionysia Kolokotsa & Kostas Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2018. "Development of Demand Response Energy Management Optimization at Building and District Levels Using Genetic Algorithm and Artificial Neural Network Modelling Power Predictions," Energies, MDPI, vol. 11(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
    2. Jun-Ho Huh & Jimin Hwa & Yeong-Seok Seo, 2020. "Hierarchical System Decomposition Using Genetic Algorithm for Future Sustainable Computing," Sustainability, MDPI, vol. 12(6), pages 1-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emad M. Ahmed & Mokhtar Aly & Ahmed Elmelegi & Abdullah G. Alharbi & Ziad M. Ali, 2019. "Multifunctional Distributed MPPT Controller for 3P4W Grid-Connected PV Systems in Distribution Network with Unbalanced Loads," Energies, MDPI, vol. 12(24), pages 1-19, December.
    2. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    3. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    4. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    5. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    6. Ghoroghi, Ali & Petri, Ioan & Rezgui, Yacine & Alzahrani, Ateyah, 2023. "A deep learning approach to predict and optimise energy in fish processing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    7. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Yang Li & Leyi Shi & Haijie Feng, 2019. "A Game-Theoretic Analysis for Distributed Honeypots," Future Internet, MDPI, vol. 11(3), pages 1-19, March.
    9. Zixiao Xu & Dechang Yang & Weilin Li, 2019. "Microgrid Group Trading Model and Solving Algorithm Based on Blockchain," Energies, MDPI, vol. 12(7), pages 1-19, April.
    10. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    11. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    12. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    13. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
    14. Xianyong Zhang & Yaohong Huang & Li Li & Wei-Chang Yeh, 2018. "Power and Capacity Consensus Tracking of Distributed Battery Storage Systems in Modular Microgrids," Energies, MDPI, vol. 11(6), pages 1-25, June.
    15. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    16. Leithon, Johann & Werner, Stefan & Koivunen, Visa, 2021. "Energy optimization through cooperative storage management: A calculus of variations approach," Renewable Energy, Elsevier, vol. 171(C), pages 1357-1370.
    17. Leithon, Johann & Werner, Stefan & Koivunen, Visa, 2020. "Cost-aware renewable energy management: Centralized vs. distributed generation," Renewable Energy, Elsevier, vol. 147(P1), pages 1164-1179.
    18. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    19. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3526-:d:191428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.