IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2960-d179374.html
   My bibliography  Save this article

Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes

Author

Listed:
  • Carlo Renno

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy)

Abstract

The knowledge of the actual energy performances of a concentrating photovoltaic and thermal (CPV/T) system with a linear focus optics, allows to evaluate the possibility of adopting this type of system for cogeneration purposes. Hence, the main aim of this paper is the design, realization, setting and modeling of a linear focus CPV/T system in the high concentration field. An experimental linear focus CPV/T plant was created in order to determine its electrical and thermal performance under different working conditions in terms of environment temperature, sunny and cloudy conditions, focal length, etc. Moreover, a theoretical model of the linear focus CPV/T system was also studied. This model evaluates the temperatures of the working fluid that flows in the cooling circuit of the CPV/T system under several operating conditions. The temperatures of the triple junction (TJ) cells, experimentally evaluated referring to different solar radiation and atmospheric conditions, were considered as the input data for the model. The values of the fluid temperature, theoretically and experimentally determined, were thus compared with good agreement. The electrical production of the CPV/T system depends generally on the TJ cell characteristics and the concentration factor, while the thermal production is above all linked to the system configuration and the direct normal irradiance (DNI) values. Hence, in this paper the electric power obtained by the linear-focus CPV/T system was evaluated referring to the cogeneration applications, and it was verified if the TJ cell and the cooling fluid reach adequate temperature levels in this type of system, in order to match the electrical and the thermal loads of a user.

Suggested Citation

  • Carlo Renno, 2018. "Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes," Energies, MDPI, vol. 11(11), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2960-:d:179374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    2. Mwesigye, Aggrey & Huan, Zhongjie & Meyer, Josua P., 2015. "Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid," Applied Energy, Elsevier, vol. 156(C), pages 398-412.
    3. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2014. "Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 478-488.
    4. Mahmoudinezhad, S. & Rezania, A. & Cotfas, D.T. & Cotfas, P.A. & Rosendahl, L.A., 2018. "Experimental and numerical investigation of hybrid concentrated photovoltaic – Thermoelectric module under low solar concentration," Energy, Elsevier, vol. 159(C), pages 1123-1131.
    5. Carlo Renno & Michele De Giacomo, 2014. "Dynamic Simulation of a CPV/T System Using the Finite Element Method," Energies, MDPI, vol. 7(11), pages 1-20, November.
    6. Monica Castaneda & Sebastian Zapata & Andres Aristizabal, 2018. "Assessing the Effect of Incentive Policies on Residential PV Investments in Colombia," Energies, MDPI, vol. 11(10), pages 1-17, October.
    7. Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & István Háber & Gábor Pintér, 2018. "Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe," Energies, MDPI, vol. 11(6), pages 1-17, June.
    8. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    9. Kerzmann, Tony & Schaefer, Laura, 2012. "System simulation of a linear concentrating photovoltaic system with an active cooling system," Renewable Energy, Elsevier, vol. 41(C), pages 254-261.
    10. Gábor Pintér & Nóra Hegedűsné Baranyai & Alec Wiliams & Henrik Zsiborács, 2018. "Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary," Energies, MDPI, vol. 11(4), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    2. Carlo Renno & Alessandro Perone & Diana D’Agostino & Francesco Minichiello, 2023. "Performance Evaluation of a Linear CPV/T System in Different Working Conditions," Energies, MDPI, vol. 16(5), pages 1-19, February.
    3. Jérôme Payet & Titouan Greffe, 2019. "Life Cycle Assessment of New High Concentration Photovoltaic (HCPV) Modules and Multi-Junction Cells," Energies, MDPI, vol. 12(15), pages 1-24, July.
    4. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    5. Carlo Renno, 2020. "Theoretical and Experimental Evaluation of the Working Fluid Temperature Levels in a CPV/T System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    6. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    7. Carlo Renno, 2021. "Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System," Energies, MDPI, vol. 14(15), pages 1-15, July.
    8. Carlo Renno & Fabio Petito & Diana D’Agostino & Francesco Minichiello, 2020. "Modeling of a CPV/T-ORC Combined System Adopted for an Industrial User," Energies, MDPI, vol. 13(13), pages 1-17, July.
    9. Benjamín Chavarría-Domínguez & Susana Estefany De León-Aldaco & Nicolás Velázquez-Limón & Mario Ponce-Silva & Jesús Armando Aguilar-Jiménez & Fernando Chavarría-Domínguez, 2024. "A Review of the Modeling of Parabolic Trough Solar Collectors Coupled to Solar Receivers with Photovoltaic/Thermal Generation," Energies, MDPI, vol. 17(7), pages 1-32, March.
    10. Carlo Renno & Alessandro Perone & Diana D’Agostino & Francesco Minichiello, 2021. "Experimental and Economic Analysis of a Concentrating Photovoltaic System Applied to Users of Increasing Size," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    2. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    4. Moath Alsafasfeh & Ikhlas Abdel-Qader & Bradley Bazuin & Qais Alsafasfeh & Wencong Su, 2018. "Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine Vision," Energies, MDPI, vol. 11(9), pages 1-18, August.
    5. Hyunji Lee & Katherine A. Kim, 2018. "Design Considerations for Parallel Differential Power Processing Converters in a Photovoltaic-Powered Wearable Application," Energies, MDPI, vol. 11(12), pages 1-17, November.
    6. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    7. Carlo Renno, 2020. "Theoretical and Experimental Evaluation of the Working Fluid Temperature Levels in a CPV/T System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    8. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    9. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    10. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    11. Abou-Ziyan, Hosny & Ibrahim, Mohammed & Abdel-Hameed, Hala, 2020. "Performance modeling and analysis of high-concentration multi-junction photovoltaics using advanced hybrid cooling systems," Applied Energy, Elsevier, vol. 269(C).
    12. Mashood Nasir & Hassan Abbas Khan & Irfan Khan & Naveed ul Hassan & Nauman Ahmad Zaffar & Aneeq Mehmood & Thilo Sauter & S. M. Muyeen, 2019. "Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform," Energies, MDPI, vol. 12(9), pages 1-21, May.
    13. Huadian Xu & Jianhui Su & Ning Liu & Yong Shi, 2018. "A Grid-Supporting Photovoltaic System Implemented by a VSG with Energy Storage," Energies, MDPI, vol. 11(11), pages 1-19, November.
    14. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    15. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    16. Alin Lin & Ming Lu & Pingjun Sun, 2018. "The Influence of Local Environmental, Economic and Social Variables on the Spatial Distribution of Photovoltaic Applications across China’s Urban Areas," Energies, MDPI, vol. 11(8), pages 1-14, July.
    17. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    18. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    19. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    20. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2960-:d:179374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.