IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2533-d171555.html
   My bibliography  Save this article

Large-Signal Stability Modeling for the Grid-Connected VSC Based on the Lyapunov Method

Author

Listed:
  • Bahram Shakerighadi

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Esmaeil Ebrahimzadeh

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Claus Leth Bak

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

In this paper, a Lyapunov-based method is used in order to determine the stability boundaries of the grid-connected voltage source converter (VSC). To do so, a state space model of the VSC is used to form the Lyapunov function of the system. Then, by using the eigenvalues of the Lyapunov function, the system stability boundaries will be determined. It is shown that the grid-connected VSC works in its stable mode when all of its Lyapunov function’s eigenvalues are positive. The proposed model validity is tested by time-domain simulation. Simulation results show that the method is credible in determining the stability margin of the grid-connected VSC.

Suggested Citation

  • Bahram Shakerighadi & Esmaeil Ebrahimzadeh & Frede Blaabjerg & Claus Leth Bak, 2018. "Large-Signal Stability Modeling for the Grid-Connected VSC Based on the Lyapunov Method," Energies, MDPI, vol. 11(10), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2533-:d:171555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Aldhaheri & Amir Etemadi, 2017. "Impedance Decoupling in DC Distributed Systems to Maintain Stability and Dynamic Performance," Energies, MDPI, vol. 10(4), pages 1-14, April.
    2. Meiyi Li & Wentao Huang & Nengling Tai & Moduo Yu, 2018. "Lyapunov-Based Large Signal Stability Assessment for VSG Controlled Inverter-Interfaced Distributed Generators," Energies, MDPI, vol. 11(9), pages 1-15, August.
    3. Xing Li & Hua Lin, 2018. "Stability Analysis of Grid-Connected Converters with Different Implementations of Adaptive PR Controllers under Weak Grid Conditions," Energies, MDPI, vol. 11(8), pages 1-17, August.
    4. Gang Yao & Zhichong Lu & Yide Wang & Mohamed Benbouzid & Luc Moreau, 2017. "A Virtual Synchronous Generator Based Hierarchical Control Scheme of Distributed Generation Systems," Energies, MDPI, vol. 10(12), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    2. Zbigniew Skibko & Magdalena Tymińska & Wacław Romaniuk & Andrzej Borusiewicz, 2021. "Impact of the Wind Turbine on the Parameters of the Electricity Supply to an Agricultural Farm," Sustainability, MDPI, vol. 13(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingpeng Yue & Zhijian Hu & Chendan Li & Juan C. Vasquez & Josep M. Guerrero, 2017. "Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System," Energies, MDPI, vol. 10(7), pages 1-14, July.
    2. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    3. Antonio Rosales & Pedro Ponce & Hiram Ponce & Arturo Molina, 2019. "A Robust Control Scheme for Renewable-Based Distributed Generators Using Artificial Hydrocarbon Networks," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    5. Rasool M. Imran & Shaorong Wang, 2018. "Enhanced Two-Stage Hierarchical Control for a Dual Mode WECS-Based Microgrid," Energies, MDPI, vol. 11(5), pages 1-19, May.
    6. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    7. Shahbaz Khan & Xiaobin Zhang & Bakht Muhammad Khan & Husan Ali & Haider Zaman & Muhammad Saad, 2018. "AC and DC Impedance Extraction for 3-Phase and 9-Phase Diode Rectifiers Utilizing Improved Average Mathematical Models," Energies, MDPI, vol. 11(3), pages 1-19, March.
    8. Muhammad Saad & Husan Ali & Huamei Liu & Shahbaz Khan & Haider Zaman & Bakht Muhammad Khan & Du Kai & Ju Yongfeng, 2018. "A dq -Domain Impedance Measurement Methodology for Three-Phase Converters in Distributed Energy Systems," Energies, MDPI, vol. 11(10), pages 1-15, October.
    9. Ahmed Aldhaheri & Amir Etemadi, 2018. "Adaptive Stabilization and Dynamic Performance Preservation of Cascaded DC-DC Systems by Incorporating Low Pass Filters," Energies, MDPI, vol. 11(2), pages 1-19, February.
    10. Xiang Wang & Zhengyou He & Jianwei Yang, 2018. "Electric Vehicle Fast-Charging Station Unified Modeling and Stability Analysis in the dq Frame," Energies, MDPI, vol. 11(5), pages 1-24, May.
    11. Yangfan Chen & Yu Zhang, 2023. "DC Transformers in DC Distribution Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    12. Jae-Suk Lee & Yeong-Jun Choi, 2021. "A Stability Improvement Method of DC Microgrid System Using Passive Damping and Proportional-Resonance (PR) Control," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    13. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Teuvo Suntio & Tuomas Messo & Matias Berg & Henrik Alenius & Tommi Reinikka & Roni Luhtala & Kai Zenger, 2019. "Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications," Energies, MDPI, vol. 12(3), pages 1-31, January.
    15. Daniel Carletti & Arthur Eduardo Alves Amorim & Thiago Silva Amorim & Domingos Sávio Lyrio Simonetti & Jussara Farias Fardin & Lucas Frizera Encarnacao, 2020. "Adaptive Armature Resistance Control of Virtual Synchronous Generators to Improve Power System Transient Stability," Energies, MDPI, vol. 13(9), pages 1-17, May.
    16. Haifeng Liang & Yuxi Huang & Hao Sun & Zhiqian Liu, 2019. "Research on Large-Signal Stability of DC Microgrid Based on Droop Control," Energies, MDPI, vol. 12(16), pages 1-14, August.
    17. Panos C. Papageorgiou & Konstantinos F. Krommydas & Antonio T. Alexandridis, 2020. "Validation of Novel PLL-driven PI Control Schemes on Supporting VSIs in Weak AC-Connections," Energies, MDPI, vol. 13(6), pages 1-21, March.
    18. Ranjan Kumar & Chandrashekhar N. Bhende, 2023. "Active Damping Stabilization Techniques for Cascaded Systems in DC Microgrids: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    19. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    20. Claudio Burgos-Mellado & Alessandro Costabeber & Mark Sumner & Roberto Cárdenas-Dobson & Doris Sáez, 2019. "Small-Signal Modelling and Stability Assessment of Phase-Locked Loops in Weak Grids," Energies, MDPI, vol. 12(7), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2533-:d:171555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.