IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2017i1p46-d124472.html
   My bibliography  Save this article

Simultaneous Provision of Flexible Ramping Product and Demand Relief by Interruptible Loads Considering Economic Incentives

Author

Listed:
  • Jiahua Hu

    (School of Electrical Engineering, Zhejiang University, No. 38 Zheda Rd., Hangzhou 310027, China)

  • Fushuan Wen

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Ke Wang

    (Guangzhou Power Supply Company Limited, Guangzhou 510620, China)

  • Yuchun Huang

    (Guangzhou Power Supply Company Limited, Guangzhou 510620, China)

  • Md. Abdus Salam

    (Department of Electrical and Electronic Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei)

Abstract

To cope with the net load variability in real time, sufficient ramp capability from controllable resources is required. To address the issue of insufficient ramp capacity in real time operations, flexible ramping products (FRPs) have been adopted by some Independent System Operators (ISOs) in the USA as a new market design. The inherent variability and uncertainty caused by renewable energy sources (RESs) call for new FRP providers apart from conventional generating units. The so-called interruptible load (IL) has proved to be useful in maintaining the supply-demand balance by providing demand relief and can be a viable FRP provider in practice. Given this background, this work presents a stochastic real-time unit commitment model considering ramp requirement and simultaneous provision of IL for FRP and demand relief. Load serving entities (LSEs) are included in the proposed model and act as mediators between the ISO and multiple ILs. In particular, incentive compatible contracts are designed to encourage customers to reveal their true outage costs. Case studies indicate both the system and LSEs can benefit by employing the proposed method and ILs can gain the highest profits by signing up a favorable contract.

Suggested Citation

  • Jiahua Hu & Fushuan Wen & Ke Wang & Yuchun Huang & Md. Abdus Salam, 2017. "Simultaneous Provision of Flexible Ramping Product and Demand Relief by Interruptible Loads Considering Economic Incentives," Energies, MDPI, vol. 11(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:46-:d:124472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/46/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/46/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeon-Gon Park & Jae-Kun Lyu & YongCheol Kang & Jong-Keun Park, 2014. "Unit Commitment Considering Interruptible Load for Power System Operation with Wind Power," Energies, MDPI, vol. 7(7), pages 1-19, July.
    2. Xia Zhou & Wei Li & Mengya Li & Qian Chen & Chaohai Zhang & Jilai Yu, 2016. "Effect of the Coordinative Optimization of Interruptible Loads in Primary Frequency Regulation on Frequency Recovery," Energies, MDPI, vol. 9(3), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongji Lin & Chongyu Wang & Fushuan Wen & Chung-Li Tseng & Jiahua Hu & Li Ma & Menghua Fan, 2019. "Risk-Limiting Real-Time Economic Dispatch in a Power System with Flexibility Resources," Energies, MDPI, vol. 12(16), pages 1-23, August.
    2. Sreekumar, Sreenu & Yamujala, Sumanth & Sharma, Kailash Chand & Bhakar, Rohit & Simon, Sishaj P. & Rana, Ankur Singh, 2022. "Flexible Ramp Products: A solution to enhance power system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Mejía-Giraldo & Gregorio Velásquez-Gomez & Nicolás Muñoz-Galeano & Juan Bernardo Cano-Quintero & Santiago Lemos-Cano, 2019. "A BESS Sizing Strategy for Primary Frequency Regulation Support of Solar Photovoltaic Plants," Energies, MDPI, vol. 12(2), pages 1-16, January.
    2. Zhiwei Li & Tianran Jin & Shuqiang Zhao & Jinshan Liu, 2018. "Power System Day-Ahead Unit Commitment Based on Chance-Constrained Dependent Chance Goal Programming," Energies, MDPI, vol. 11(7), pages 1-20, July.
    3. Liping Wang & Minghao Liu & Boquan Wang & Jiajie Wu & Chuangang Li, 2017. "Study on Nested-Structured Load Shedding Method of Thermal Power Stations Based on Output Fluctuations," Energies, MDPI, vol. 10(10), pages 1-16, September.
    4. Kyung-bin Kwon & Hyeongon Park & Jae-Kun Lyu & Jong-Keun Park, 2016. "Cost Analysis Method for Estimating Dynamic Reserve Considering Uncertainties in Supply and Demand," Energies, MDPI, vol. 9(10), pages 1-16, October.
    5. Kwon, Kyung-bin & Kim, Dam, 2020. "Enhanced method for considering energy storage systems as ancillary service resources in stochastic unit commitment," Energy, Elsevier, vol. 213(C).
    6. Shengli Liao & Zhifu Li & Gang Li & Jiayang Wang & Xinyu Wu, 2015. "Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power," Energies, MDPI, vol. 8(11), pages 1-17, November.
    7. Xia Zhou & Wei Li & Mengya Li & Qian Chen & Chaohai Zhang & Jilai Yu, 2016. "Effect of the Coordinative Optimization of Interruptible Loads in Primary Frequency Regulation on Frequency Recovery," Energies, MDPI, vol. 9(3), pages 1-11, March.
    8. Jianjian Shen & Chuntian Cheng & Jun Zhang & Jianyu Lu, 2015. "Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces," Energies, MDPI, vol. 8(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:46-:d:124472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.