IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1272-d109931.html
   My bibliography  Save this article

An Electro-Geometric Model for Lightning Shielding of Multiple Wind Turbines

Author

Listed:
  • Li Zhang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Guozheng Wang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Wenfang Zhang

    (School of Electrical Engineering, Shandong University, Jinan 250061, China)

  • Yufei Ma

    (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Zixin Guo

    (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Qingmin Li

    (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Wind turbine blades being struck by lightning is one of the most urgent problems facing wind farms. In order to reduce the probability of lightning accidents on wind farms, this paper presents a new electro-geometric model for multiple turbines. In this new model, based on the physical model of lightning leader development, the striking distance range of the blade tip receptor is calculated, taking into account the influence of the charged particles around the blade. Lightning shielding amongst multiple turbines is provided in combination with the traditional electro-geometric model, and a criterion formula is obtained for mutual shielding for multiple turbines. The influence of environmental factors, such as temperature, atmospheric pressure, air humidity, and altitude, on lightning shielding on large-scale wind farms is also analyzed by studying the lightning shielding distance between wind turbines. The calculation shows that the larger the relative air density and the absolute humidity, and the lower the altitude, and the larger the lightning shielding distance between wind turbines. The method proposed in this paper provides a theoretical basis for the lightning protection on wind farms under different environmental conditions.

Suggested Citation

  • Li Zhang & Guozheng Wang & Wenfang Zhang & Yufei Ma & Zixin Guo & Qingmin Li, 2017. "An Electro-Geometric Model for Lightning Shielding of Multiple Wind Turbines," Energies, MDPI, vol. 10(9), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1272-:d:109931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    3. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    4. Bansal, Jagdish Chand & Farswan, Pushpa, 2017. "Wind farm layout using biogeography based optimization," Renewable Energy, Elsevier, vol. 107(C), pages 386-402.
    5. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    6. Abdullah Al-Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2021. "Optimal Sizing of Hybrid Wind-Solar Power Systems to Suppress Output Fluctuation," Energies, MDPI, vol. 14(17), pages 1-16, August.
    7. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    8. Siyu Tao & Andrés Feijóo & Jiemin Zhou & Gang Zheng, 2020. "Topology Design of an Offshore Wind Farm with Multiple Types of Wind Turbines in a Circular Layout," Energies, MDPI, vol. 13(3), pages 1-16, January.
    9. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    10. Sichen Tao & Yifei Yang & Ruihan Zhao & Hiroyoshi Todo & Zheng Tang, 2024. "Competitive Elimination Improved Differential Evolution for Wind Farm Layout Optimization Problems," Mathematics, MDPI, vol. 12(23), pages 1-24, November.
    11. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    12. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    13. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    14. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    15. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    16. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    17. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    18. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    19. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    20. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús & González Rodríguez, Ángel Gaspar, 2015. "Maximizing the overall production of wind farms by setting the individual operating point of wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 219-229.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1272-:d:109931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.