IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1242-d109126.html
   My bibliography  Save this article

Modelling and Control of Parallel-Connected Transformerless Inverters for Large Photovoltaic Farms

Author

Listed:
  • Marian Liberos

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Raúl González-Medina

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Gabriel Garcerá

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

  • Emilio Figueres

    (Grupo de Sistemas Electrónicos Industriales del Departamento de Ingeniería Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain)

Abstract

This paper presents a control structure for transformerless photovoltaic inverters connected in parallel to manage photovoltaic fields in the MW range. Large photovoltaic farms are usually divided into several photovoltaic fields, each one of them managed by a centralized high power inverter. The current tendency to build up centralized inverters in the MW range is the use of several transformerless inverters connected in parallel, a topology that provokes the appearance of significant zero-sequence circulating currents among inverters. To eliminate this inconvenience, this paper proposes a control structure that avoids the appearance of circulating currents by controlling the zero-sequence component of the inverters. A second contribution of the paper is the development of a model of n parallel-connected inverters. To validate the concept, the proposed control structure has been applied to a photovoltaic field of 2 MW managed by four 500 kW photovoltaic inverters connected in parallel.

Suggested Citation

  • Marian Liberos & Raúl González-Medina & Gabriel Garcerá & Emilio Figueres, 2017. "Modelling and Control of Parallel-Connected Transformerless Inverters for Large Photovoltaic Farms," Energies, MDPI, vol. 10(8), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1242-:d:109126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pazheri, F.R. & Othman, M.F. & Malik, N.H., 2014. "A review on global renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 835-845.
    2. Turgay Duman & Shilpa Marti & M. A. Moonem & Azas Ahmed Rifath Abdul Kader & Hariharan Krishnaswami, 2017. "A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 10(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Václav Beránek & Tomáš Olšan & Martin Libra & Vladislav Poulek & Jan Sedláček & Minh-Quan Dang & Igor I. Tyukhov, 2018. "New Monitoring System for Photovoltaic Power Plants’ Management," Energies, MDPI, vol. 11(10), pages 1-13, September.
    2. Chen Zheng & Qionglin Li & Lin Zhou & Bin Li & Mingxuan Mao, 2018. "The Interaction Stability Analysis of a Multi-Inverter System Containing Different Types of Inverters," Energies, MDPI, vol. 11(9), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    2. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).
    3. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    4. Wang, Linyuan & Zhao, Lin & Mao, Guozhu & Zuo, Jian & Du, Huibin, 2017. "Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 57-69.
    5. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.
    6. Mao, Guozhu & Liu, Xi & Du, Huibin & Zuo, Jian & Wang, Linyuan, 2015. "Way forward for alternative energy research: A bibliometric analysis during 1994–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 276-286.
    7. Jin-Gyeom Kim & Bowon Lee, 2020. "Automatic P2P Energy Trading Model Based on Reinforcement Learning Using Long Short-Term Delayed Reward," Energies, MDPI, vol. 13(20), pages 1-27, October.
    8. Jiatu Hong & Mahinda Vilathgamuwa & Jian Yin & Yitao Liu & Jianchun Peng & Hui Jiang, 2018. "Power Decoupling of a Single Phase DC-AC Dual Active Bridge Converter Based on an Integrated Bidirectional Buck/Boost Stage," Energies, MDPI, vol. 11(10), pages 1-16, October.
    9. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    10. Xuesong Zhou & Mao Liu & Youjie Ma & Bao Yang & Faqing Zhao, 2019. "Linear Active Disturbance Rejection Control for DC Bus Voltage of Permanent Magnet Synchronous Generator Based on Total Disturbance Differential," Energies, MDPI, vol. 12(20), pages 1-22, October.
    11. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    12. Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
    13. Li, Yi & Yu, Hao & Xiao, Yanling & Li, Yi & Liu, Yinjiang & Luo, Xian & Tang, Dong & Zhang, Guijin & Liu, Yaning, 2023. "Numerical verification on the feasibility of compressed carbon dioxide energy storage in two aquifers," Renewable Energy, Elsevier, vol. 207(C), pages 743-764.
    14. Haris Ataullah & Taosif Iqbal & Ihsan Ullah Khalil & Usman Ali & Vojtech Blazek & Lukas Prokop & Nasim Ullah, 2022. "Analysis of the Dual Active Bridge-Based DC-DC Converter Topologies, High-Frequency Transformer, and Control Techniques," Energies, MDPI, vol. 15(23), pages 1-23, November.
    15. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    16. Fan, Xiao-chao & Wang, Wei-qing, 2016. "Spatial patterns and influencing factors of China׳s wind turbine manufacturing industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 482-496.
    17. Lei Wang & Qinghua Wu & Wenhu Tang, 2017. "Energy Balance Control of a Cascaded Multilevel Inverter for Standalone Solar Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-17, November.
    18. Aneta Bełdycka-Bórawska & Piotr Bórawski & Michał Borychowski & Rafał Wyszomierski & Marek Bartłomiej Bórawski & Tomasz Rokicki & Luiza Ochnio & Krzysztof Jankowski & Bartosz Mickiewicz & James W. Dun, 2021. "Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies," Energies, MDPI, vol. 14(12), pages 1-22, June.
    19. Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
    20. Zeng, Ming & Yang, Yongqi & Fan, Qiannan & Liu, Yingxin & Zou, Zhuojun, 2015. "Coordination between clean energy generation and thermal power generation under the policy of “direct power-purchase for large users” in China," Utilities Policy, Elsevier, vol. 33(C), pages 10-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1242-:d:109126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.