IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p920-d103606.html
   My bibliography  Save this article

Advantages of Using Supercapacitors and Silicon Carbide on Hybrid Vehicle Series Architecture

Author

Listed:
  • Massimiliano Passalacqua

    (Electrical, Electronic, and Telecommunications Engineering and Naval Architecture Department (DITEN), University of Genova, via all’Opera Pia 11a, 16145 Genova, Italy)

  • Damiano Lanzarotto

    (Electrical, Electronic, and Telecommunications Engineering and Naval Architecture Department (DITEN), University of Genova, via all’Opera Pia 11a, 16145 Genova, Italy)

  • Matteo Repetto

    (Department of Mechanical, Energy, Management and Transportation Engineering (DIME), University of Genova, via all’Opera Pia 15, 16145 Genova, Italy)

  • Mario Marchesoni

    (Electrical, Electronic, and Telecommunications Engineering and Naval Architecture Department (DITEN), University of Genova, via all’Opera Pia 11a, 16145 Genova, Italy)

Abstract

In recent years enormous growth has taken place in the hybrid vehicle sector; parallel architecture is the most widespread configuration regarding medium size cars. At the same time, storage systems and power electronics have experienced some important innovations. The development of supercapacitors has permitted management of high power with elevated efficiency. Moreover, the availability on the market of silicon carbide components has allowed a significant reduction of power electronic losses. These improvements may challenge the hybrid architecture used in medium size cars nowadays. On one hand, series architecture would relevantly benefit from an electric powertrain efficiency increase, on the other hand, these innovations would generate low benefits in parallel architectures. The aim of this paper is to evaluate electric component average efficiency over different road missions, in order to estimate fuel economy over various working conditions and finally to establish which hybrid configuration is most efficient in vehicle applications.

Suggested Citation

  • Massimiliano Passalacqua & Damiano Lanzarotto & Matteo Repetto & Mario Marchesoni, 2017. "Advantages of Using Supercapacitors and Silicon Carbide on Hybrid Vehicle Series Architecture," Energies, MDPI, vol. 10(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:920-:d:103606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Huang & Changle Xiang & Yue Ma & Weida Wang & Reza Langari, 2017. "Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission," Energies, MDPI, vol. 10(2), pages 1-18, February.
    2. Hanho Son & Kyusik Park & Sungho Hwang & Hyunsoo Kim, 2017. "Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses," Energies, MDPI, vol. 10(4), pages 1-18, March.
    3. Haitao Min & Changlu Lai & Yuanbin Yu & Tao Zhu & Cong Zhang, 2017. "Comparison Study of Two Semi-Active Hybrid Energy Storage Systems for Hybrid Electric Vehicle Applications and Their Experimental Validation," Energies, MDPI, vol. 10(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.
    2. Andrzej Łebkowski, 2018. "Steam and Oxyhydrogen Addition Influence on Energy Usage by Range Extender—Battery Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-20, September.
    3. Jorge Garcia & Pablo Garcia & Fabio Giulii Capponi & Giulio De Donato, 2018. "Analysis, Modeling, and Control of Half-Bridge Current-Source Converter for Energy Management of Supercapacitor Modules in Traction Applications," Energies, MDPI, vol. 11(9), pages 1-22, August.
    4. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    5. Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2020. "A Refined Loss Evaluation of a Three-Switch Double Input DC-DC Converter for Hybrid Vehicle Applications," Energies, MDPI, vol. 13(1), pages 1-13, January.
    6. Ernest Cortez & Manuel Moreno-Eguilaz & Francisco Soriano, 2018. "Advanced Methodology for the Optimal Sizing of the Energy Storage System in a Hybrid Electric Refuse Collector Vehicle Using Real Routes," Energies, MDPI, vol. 11(12), pages 1-17, November.
    7. Alessandro Benevieri & Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2021. "Series Architecture on Hybrid Electric Vehicles: A Review," Energies, MDPI, vol. 14(22), pages 1-31, November.
    8. Andrea Bonfiglio & Damiano Lanzarotto & Mario Marchesoni & Massimiliano Passalacqua & Renato Procopio & Matteo Repetto, 2017. "Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles," Energies, MDPI, vol. 10(12), pages 1-17, December.
    9. Matteo Repetto & Massimiliano Passalacqua & Luis Vaccaro & Mario Marchesoni & Alessandro Pini Prato, 2020. "Turbocompound Power Unit Modelling for a Supercapacitor-Based Series Hybrid Vehicle Application," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    2. Xiaojun Liu & Dongye Sun & Datong Qin & Junlong Liu, 2017. "Achievement of Fuel Savings in Wheel Loader by Applying Hydrodynamic Mechanical Power Split Transmissions," Energies, MDPI, vol. 10(9), pages 1-20, August.
    3. Andrea Bonfiglio & Damiano Lanzarotto & Mario Marchesoni & Massimiliano Passalacqua & Renato Procopio & Matteo Repetto, 2017. "Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles," Energies, MDPI, vol. 10(12), pages 1-17, December.
    4. Hyunhwa Kim & Junbeom Wi & Jiho Yoo & Hanho Son & Chiman Park & Hyunsoo Kim, 2018. "A Study on the Fuel Economy Potential of Parallel and Power Split Type Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-19, August.
    5. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    6. Milan Perkušić & Damir Jelaska & Srdjan Podrug & Vjekoslav Tvrdić, 2017. "On the Feasibility of Independently Controllable Transmissions," Energies, MDPI, vol. 10(11), pages 1-13, November.
    7. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    9. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    10. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Chiwoong Song & Dongsuk Kum & Kyung-Soo Kim, 2018. "Feasibility Analysis and Performance Evaluation of a Novel Power-Split Flywheel Hybrid Vehicle," Energies, MDPI, vol. 11(7), pages 1-25, July.
    12. Zhu, Tao & Lot, Roberto & Wills, Richard G.A. & Yan, Xingda, 2020. "Sizing a battery-supercapacitor energy storage system with battery degradation consideration for high-performance electric vehicles," Energy, Elsevier, vol. 208(C).
    13. Aroua, Ayoub & Lhomme, Walter & Redondo-Iglesias, Eduardo & Verbelen, Florian, 2022. "Fuel saving potential of a long haul heavy duty vehicle equipped with an electrical variable transmission," Applied Energy, Elsevier, vol. 307(C).
    14. Hanho Son & Hyunhwa Kim & Sungho Hwang & Hyunsoo Kim, 2018. "Development of an Advanced Rule-Based Control Strategy for a PHEV Using Machine Learning," Energies, MDPI, vol. 11(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:920-:d:103606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.