IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2103-d163458.html
   My bibliography  Save this article

A Study on the Fuel Economy Potential of Parallel and Power Split Type Hybrid Electric Vehicles

Author

Listed:
  • Hyunhwa Kim

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Junbeom Wi

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Jiho Yoo

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Hanho Son

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Chiman Park

    (Eco-Vehicle R&D Division, Hyundai Powertech, Hwaseong-si 18583, Korea)

  • Hyunsoo Kim

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

Abstract

What is the best number of gear steps for parallel type hybrid electric vehicles (HEVs) and what are the pros and cons of the power split type HEV compared to the parallel type have been interesting issues in the development of HEVs. In this study, a comparative analysis was performed to evaluate the fuel economy potential of a parallel HEV and a power split type HEV. First, the fuel economy potential of the parallel HEV was investigated for the number of gear steps. Four-speed, six-speed, and eight-speed automatic transmissions (ATs) and a continuously variable transmission (CVT) were selected, and their drivetrain losses were considered in the dynamic programming (DP). It was found from DP results that the power electronics system (PE) loss decreased because the magnitude of the motor load leveling power decreased as the number of gear steps increased. On the other hand, the drivetrain losses including the electric oil pump (EOP) loss increased with increasing gear step. The improvement rate from the 4-speed to the 6-speed was the greatest, while it decreased for the higher gear step. The fuel economy of the CVT HEV was rather low due to the large EOP loss in spite of the reduced PE loss. In addition, the powertrain characteristics of the parallel HEV were compared with the power split type HEV. In the power split type HEV, the PE loss was almost double compared to that of the parallel HEV because two large capacity motor-generators were used. However, the drivetrain loss and EOP loss of the power split type HEV were found to be much smaller due to its relatively simple architecture. It is expected that the power characteristics of the parallel and power split type HEVs obtained from the DP results can be used in the development of HEV systems.

Suggested Citation

  • Hyunhwa Kim & Junbeom Wi & Jiho Yoo & Hanho Son & Chiman Park & Hyunsoo Kim, 2018. "A Study on the Fuel Economy Potential of Parallel and Power Split Type Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2103-:d:163458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    2. Hanho Son & Kyusik Park & Sungho Hwang & Hyunsoo Kim, 2017. "Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses," Energies, MDPI, vol. 10(4), pages 1-18, March.
    3. Yang, Yalian & Hu, Xiaosong & Pei, Huanxin & Peng, Zhiyuan, 2016. "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, Elsevier, vol. 168(C), pages 683-690.
    4. Hanho Son & Hyunsoo Kim, 2016. "Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses," Energies, MDPI, vol. 9(6), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keun-Young Yoon & Soo-Whang Baek, 2019. "Robust Design Optimization with Penalty Function for Electric Oil Pumps with BLDC Motors," Energies, MDPI, vol. 12(1), pages 1-14, January.
    2. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    3. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2020. "Gear Ratio Optimization along with a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle," Energies, MDPI, vol. 13(19), pages 1-24, September.
    4. Branimir Škugor & Joško Petrić, 2018. "Optimization of Control Variables and Design of Management Strategy for Hybrid Hydraulic Vehicle," Energies, MDPI, vol. 11(10), pages 1-24, October.
    5. Matteo Repetto & Massimiliano Passalacqua & Luis Vaccaro & Mario Marchesoni & Alessandro Pini Prato, 2020. "Turbocompound Power Unit Modelling for a Supercapacitor-Based Series Hybrid Vehicle Application," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Lian & Shuang Liu & Linhui Li & Xuanzuo Liu & Yafu Zhou & Fan Yang & Lushan Yuan, 2017. "A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC) Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs)," Energies, MDPI, vol. 10(1), pages 1-18, January.
    2. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    3. Hanho Son & Kyusik Park & Sungho Hwang & Hyunsoo Kim, 2017. "Design Methodology of a Power Split Type Plug-In Hybrid Electric Vehicle Considering Drivetrain Losses," Energies, MDPI, vol. 10(4), pages 1-18, March.
    4. Xu, Nan & Kong, Yan & Zhang, Yuanjian & Yue, Fenglai & Sui, Yan & Li, Xiaohan & Liu, Heng & Xu, Zhe, 2022. "Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy," Energy, Elsevier, vol. 251(C).
    5. Hanho Son & Hyunhwa Kim & Sungho Hwang & Hyunsoo Kim, 2018. "Development of an Advanced Rule-Based Control Strategy for a PHEV Using Machine Learning," Energies, MDPI, vol. 11(1), pages 1-15, January.
    6. Yongjian Zhou & Rong Yang & Song Zhang & Kejun Lan & Wei Huang, 2023. "Optimization of Power-System Parameters and Energy-Management Strategy Research on Hybrid Heavy-Duty Trucks," Energies, MDPI, vol. 16(17), pages 1-21, August.
    7. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    8. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    9. Pan, Haihong & Lü, Zhiqiang & Lin, Weilong & Li, Junzi & Chen, Lin, 2017. "State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model," Energy, Elsevier, vol. 138(C), pages 764-775.
    10. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    11. Hsiu-Ying Hwang & Tian-Syung Lan & Jia-Shiun Chen, 2020. "Optimization and Application for Hydraulic Electric Hybrid Vehicle," Energies, MDPI, vol. 13(2), pages 1-17, January.
    12. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    13. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    14. Sánchez, Marcelino & Delprat, Sébastien & Hofman, Theo, 2020. "Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach," Applied Energy, Elsevier, vol. 260(C).
    15. Hassanzadeh, Mojtaba & Rahmani, Zahra, 2022. "A predictive controller for real-time energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 249(C).
    16. Xiaojun Liu & Dongye Sun & Datong Qin & Junlong Liu, 2017. "Achievement of Fuel Savings in Wheel Loader by Applying Hydrodynamic Mechanical Power Split Transmissions," Energies, MDPI, vol. 10(9), pages 1-20, August.
    17. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    18. Yongpeng Shen & Zhendong He & Dongqi Liu & Binjie Xu, 2016. "Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model," Energies, MDPI, vol. 9(2), pages 1-18, February.
    19. Juraj Karlušić & Mihael Cipek & Danijel Pavković & Željko Šitum & Juraj Benić & Marijan Šušnjar, 2020. "Benefit Assessment of Skidder Powertrain Hybridization Utilizing a Novel Cascade Optimization Algorithm," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    20. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2103-:d:163458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.