IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1012-d104899.html
   My bibliography  Save this article

Performance Predictions of Dry and Wet Vapors Ejectors Over Entire Operational Range

Author

Listed:
  • Fenglei Li

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhao Chang

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Qi Tian

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Changzhi Wu

    (Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, Perth, WA 6845, Australia)

  • Xiangyu Wang

    (Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, Perth, WA 6845, Australia)

Abstract

If a traditional ideal-gas ejector model is used to evaluate the performance of a wet vapor ejector, large deviations from the experimental results will be unavoidable. Moreover, the model usually fails to assess the ejector performance at subcritical mode. In this paper, we proposed a novel model to evaluate the performance of both dry and wet vapors ejectors over the entire operational range at critical or subcritical modes. The model was obtained by integrating the linear characteristic equations of ejector with critical and breakdown points models, which were developed based on the assumptions of constant-pressure mixing and constant-pressure disturbing. In the models, the equations of the two-phase speed of sound and the property of real gas were introduced and ejector component efficiencies were optimized to improve the accuracy of evaluation. It was validated that the proposed model for the entire operational range can achieve a better performance than those existing for R134a, R141b and R245fa. The critical and breakdown points models were further used to investigate the effect of operational parameters on the performance of an ejector refrigeration system (ERS). The theoretical results indicated that decreasing the saturated generating temperature when the actual condensing temperature decreases, and/or increasing the saturated evaporating temperature can improve the performance of ERS significantly. Moreover, superheating the primary flow before it enters the ejector can further improve the performance of an ERS using R134a as a working fluid.

Suggested Citation

  • Fenglei Li & Zhao Chang & Qi Tian & Changzhi Wu & Xiangyu Wang, 2017. "Performance Predictions of Dry and Wet Vapors Ejectors Over Entire Operational Range," Energies, MDPI, vol. 10(7), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1012-:d:104899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Umair & Atsushi Akisawa & Yuki Ueda, 2014. "Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator," Energies, MDPI, vol. 7(3), pages 1-19, March.
    2. Li, Fenglei & Wu, Changzhi & Wang, Xiangyu & Tian, Qi & Teo, Kok Lay, 2016. "Sparsity-enhanced optimization for ejector performance prediction," Energy, Elsevier, vol. 113(C), pages 25-34.
    3. Chen, Weixiong & Shi, Chaoyin & Zhang, Shuangping & Chen, Huiqiang & Chong, Daotong & Yan, Junjie, 2017. "Theoretical analysis of ejector refrigeration system performance under overall modes," Applied Energy, Elsevier, vol. 185(P2), pages 2074-2084.
    4. Mohammed Khennich & Mikhail Sorin & Nicolas Galanis, 2016. "Exergy Flows inside a One Phase Ejector for Refrigeration Systems," Energies, MDPI, vol. 9(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peris Pérez, Bernardo & Ávila Gutiérrez, Miguel & Expósito Carrillo, José Antonio & Salmerón Lissén, José Manuel, 2022. "Performance of Solar-driven Ejector Refrigeration System (SERS) as pre-cooling system for air handling units in warm climates," Energy, Elsevier, vol. 238(PA).
    2. Bartosz Gil & Jacek Kasperski, 2018. "Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement," Energies, MDPI, vol. 11(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    2. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    3. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    4. Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
    5. Jeon, Yongseok & Kim, Sunjae & Lee, Sang Hun & Chung, Hyun Joon & Kim, Yongchan, 2020. "Seasonal energy performance characteristics of novel ejector-expansion air conditioners with low-GWP refrigerants," Applied Energy, Elsevier, vol. 278(C).
    6. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    7. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    8. Yiqiao Li & Shengqiang Shen & Chao Niu & Yali Guo & Liuyang Zhang, 2022. "The Effect of Different Pressure Conditions on Shock Waves in a Supersonic Steam Ejector," Energies, MDPI, vol. 15(8), pages 1-15, April.
    9. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
    10. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    11. Yang, Yan & Zhu, Xiaowei & Yan, Yuying & Ding, Hongbing & Wen, Chuang, 2019. "Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation," Applied Energy, Elsevier, vol. 242(C), pages 157-167.
    12. Metsue, Antoine & Debroeyer, Romain & Poncet, Sébastien & Bartosiewicz, Yann, 2022. "An improved thermodynamic model for supersonic real-gas ejectors using the compound-choking theory," Energy, Elsevier, vol. 238(PB).
    13. Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
    14. Haghparast, Payam & Sorin, Mikhail V. & Nesreddine, Hakim, 2018. "The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle," Energy, Elsevier, vol. 162(C), pages 728-743.
    15. Chen, Jianyong & Li, Yunhai & Chen, Weixiong & Luo, Xianglong & Chen, Ying & Yang, Zhi & Eames, Ian W., 2018. "Investigation of the ejector nozzle in refrigeration system," Energy, Elsevier, vol. 157(C), pages 571-587.
    16. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K. & Sur, Anirban, 2017. "An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 364-376.
    17. Marzia Khanam & Skander Jribi & Takahiko Miyazaki & Bidyut Baran Saha & Shigeru Koyama, 2018. "Numerical Investigation of Small-Scale Adsorption Cooling System Performance Employing Activated Carbon-Ethanol Pair," Energies, MDPI, vol. 11(6), pages 1-15, June.
    18. Ll Macia & R. Castilla & P. J. Gamez-Montero & S. Camacho & E. Codina, 2019. "Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam," Energies, MDPI, vol. 12(18), pages 1-17, September.
    19. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    20. Wang, Kai & Wang, Lei & Gao, Rui, 2023. "An extended mechanism model of gaseous ejectors," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1012-:d:104899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.