IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp524-536.html
   My bibliography  Save this article

The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors

Author

Listed:
  • Lamberts, Olivier
  • Chatelain, Philippe
  • Bourgeois, Nicolas
  • Bartosiewicz, Yann

Abstract

While the limitation of the entrainment ratio in supersonic ejectors is a well-known phenomenon, there is still a need to gain insight on the choking phenomena at play in on-design operation. In state-of-the-art simplified models of supersonic ejectors, the secondary stream is assumed to reach sonic velocity in a hypothetical throat (Fabri-choking). However, an alternative explanation of the entrainment limitation known as the compound-choking theory states that a nozzle flow with two streams at different stagnation pressures may be choked with a subsonic stream if the other one is supersonic. In this paper, the compound-choking is highlighted in a supersonic ejector through a thorough analysis of numerical simulations validated against experimental data. In addition, comprehensive experimental data of supersonic ejectors are used to assess the performance of the compound-choking theory to predict the entrainment ratio in the on-design regime in various configurations. Most predictions are in the ±10% range when compared to the experimental data. Compared to state-of-the-art 1D models relying on the Fabri-choking assumption, the compound-choking theory is shown to generally perform better regarding the prediction of the on-design entrainment ratio. This study suggests that the compound-choking theory is well suited to model the choking process in supersonic ejectors.

Suggested Citation

  • Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:524-536
    DOI: 10.1016/j.energy.2018.06.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunnanond, Kanjanapon & Aphornratana, Satha, 2004. "Ejectors: applications in refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 129-155, April.
    2. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    3. Chen, Weixiong & Shi, Chaoyin & Zhang, Shuangping & Chen, Huiqiang & Chong, Daotong & Yan, Junjie, 2017. "Theoretical analysis of ejector refrigeration system performance under overall modes," Applied Energy, Elsevier, vol. 185(P2), pages 2074-2084.
    4. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    5. Ji, MyoungKuk & Utomo, Tony & Woo, JuSik & Lee, YongHun & Jeong, HyoMin & Chung, HanShik, 2010. "CFD investigation on the flow structure inside thermo vapor compressor," Energy, Elsevier, vol. 35(6), pages 2694-2702.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sui, Yang & Niu, Jiqiang & Yu, Qiujun & Yuan, Yanping & Cao, Xiaoling & Yang, Xiaofeng, 2021. "Numerical analysis of the aerothermodynamic behavior of a Hyperloop in choked flow," Energy, Elsevier, vol. 237(C).
    2. Croquer, Sergio & Fang, Yu & Metsue, Antoine & Bartosiewicz, Yann & Poncet, Sébastien, 2021. "Compound-choking theory for supersonic ejectors working with real gas," Energy, Elsevier, vol. 227(C).
    3. Wang, Kai & Wang, Lei & Gao, Rui, 2023. "An extended mechanism model of gaseous ejectors," Energy, Elsevier, vol. 264(C).
    4. Metsue, Antoine & Debroeyer, Romain & Poncet, Sébastien & Bartosiewicz, Yann, 2022. "An improved thermodynamic model for supersonic real-gas ejectors using the compound-choking theory," Energy, Elsevier, vol. 238(PB).
    5. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    6. Van den Berghe, Jan & Dias, Bruno R.B. & Bartosiewicz, Yann & Mendez, Miguel A., 2023. "A 1D model for the unsteady gas dynamics of ejectors," Energy, Elsevier, vol. 267(C).
    7. Ll Macia & R. Castilla & P. J. Gamez-Montero & S. Camacho & E. Codina, 2019. "Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam," Energies, MDPI, vol. 12(18), pages 1-17, September.
    8. Zhou, Yifan & Chen, Guangming & Hao, Xinyue & Gao, Neng & Volovyk, Oleksii, 2023. "Working mechanism and characteristics analysis of a novel configuration of a supersonic ejector," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    2. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    3. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
    4. Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
    5. Metsue, Antoine & Debroeyer, Romain & Poncet, Sébastien & Bartosiewicz, Yann, 2022. "An improved thermodynamic model for supersonic real-gas ejectors using the compound-choking theory," Energy, Elsevier, vol. 238(PB).
    6. Yilmaz, Tuncay & Erdinç, Mehmet Tahir, 2019. "Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants," Energy, Elsevier, vol. 168(C), pages 712-727.
    7. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    8. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    9. Khennich, Mohammed & Galanis, Nicolas & Sorin, Mikhail, 2016. "Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems," Applied Energy, Elsevier, vol. 179(C), pages 1020-1031.
    10. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    11. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    12. Wang, Kai & Wang, Lei & Gao, Rui, 2023. "An extended mechanism model of gaseous ejectors," Energy, Elsevier, vol. 264(C).
    13. Valerie Eveloy & Yusra Alkendi, 2021. "Thermodynamic Performance Investigation of a Small-Scale Solar Compression-Assisted Multi-Ejector Indoor Air Conditioning System for Hot Climate Conditions," Energies, MDPI, vol. 14(14), pages 1-31, July.
    14. Li, Shengyu & Yan, Jia & Liu, Zhan & Yao, Yong & Li, Xianbi & Wen, Na & Zou, Guorong, 2019. "Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks," Energy, Elsevier, vol. 189(C).
    15. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    16. Mohamed, Saleh & Shatilla, Youssef & Zhang, TieJun, 2019. "CFD-based design and simulation of hydrocarbon ejector for cooling," Energy, Elsevier, vol. 167(C), pages 346-358.
    17. Peris Pérez, Bernardo & Ávila Gutiérrez, Miguel & Expósito Carrillo, José Antonio & Salmerón Lissén, José Manuel, 2022. "Performance of Solar-driven Ejector Refrigeration System (SERS) as pre-cooling system for air handling units in warm climates," Energy, Elsevier, vol. 238(PA).
    18. Kumar, Vikas & Sachdeva, Gulshan, 2018. "1-D model for finding geometry of a single phase ejector," Energy, Elsevier, vol. 165(PA), pages 75-92.
    19. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    20. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:524-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.