IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1011-d104936.html
   My bibliography  Save this article

A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings

Author

Listed:
  • Shubiao Wang

    (New Energy Research Center, School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Key Laboratory of Clean Energy Technology, School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Longyun Kang

    (New Energy Research Center, School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Key Laboratory of Clean Energy Technology, School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Xiangwei Guo

    (College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China)

  • Zefeng Wang

    (New Energy Research Center, School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Key Laboratory of Clean Energy Technology, School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Ming Liu

    (New Energy Research Center, School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Key Laboratory of Clean Energy Technology, School of Electric Power, South China University of Technology, Guangzhou 510640, China)

Abstract

To eliminate the influence of the inconsistency on the cycle life and the available capacity of battery packs, and improve the balancing speed, a novel inductor-based layered bidirectional equalizer (IBLBE) is proposed. The equalizer is composed of two layers of balancing circuits connected in parallel. Each layer contains multiple balancing sub-circuits based on buck-boost converters. These balancing sub-circuits can equalize the corresponding cells simultaneously, and allow the dynamic adjustment of equalization path and equalization threshold. Analysis and simulation results demonstrate the IBLBE has a higher level balancing speed than other equalizers based on switched-capacitor or switched-inductor converters, and reduces the balancing time by 30% compared to existing inductor-based parallel architecture equalizers (PAEs). Experimental results are presented to validate the analysis and effectiveness of the proposed equalizer.

Suggested Citation

  • Shubiao Wang & Longyun Kang & Xiangwei Guo & Zefeng Wang & Ming Liu, 2017. "A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings," Energies, MDPI, vol. 10(7), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1011-:d:104936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangwei Guo & Longyun Kang & Zhizhen Huang & Yuan Yao & Huizhou Yang, 2015. "Research on a Novel Power Inductor-Based Bidirectional Lossless Equalization Circuit for Series-Connected Battery Packs," Energies, MDPI, vol. 8(6), pages 1-22, June.
    2. Wenbiao Li & Longyun Kang & Xiangwei Guo & Yuan Yao, 2016. "Multi-Objective Predictive Balancing Control of Battery Packs Based on Predictive Current," Energies, MDPI, vol. 9(4), pages 1-12, April.
    3. Yuanmao Ye & Ka Wai Eric Cheng, 2016. "An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings," Energies, MDPI, vol. 9(3), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Utpal Kumar & Shrivastava, Prashant & Tey, Kok Soon & Bin Idris, Mohd Yamani Idna & Mekhilef, Saad & Jamei, Elmira & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Advancement of lithium-ion battery cells voltage equalization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Chusheng Lu & Longyun Kang & Xuan Luo & Jinqing Linghu & Hongye Lin, 2019. "A Novel Lithium Battery Equalization Circuit with Any Number of Inductors," Energies, MDPI, vol. 12(24), pages 1-14, December.
    3. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Chusheng Lu & Longyun Kang & Shubiao Wang & Zefeng Wang & Huabing Rao, 2018. "A Novel Inductor-Based Non-Dissipative Equalizer," Energies, MDPI, vol. 11(10), pages 1-14, October.
    5. Xintian Liu & Yafei Sun & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2017. "Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits," Energies, MDPI, vol. 10(10), pages 1-16, September.
    6. Xiaogang Wu & Zhihao Cui & Xuefeng Li & Jiuyu Du & Ye Liu, 2019. "Control Strategy for Active Hierarchical Equalization Circuits of Series Battery Packs," Energies, MDPI, vol. 12(11), pages 1-18, May.
    7. Shungang Xu & Kai Gao & Xiaobing Zhang & Kangle Li, 2019. "Double-Layer E-Structure Equalization Circuit for Series Connected Battery Strings," Energies, MDPI, vol. 12(22), pages 1-16, November.
    8. Shun-Chung Wang & Chun-Yu Liu & Yi-Hua Liu, 2018. "A Fast Equalizer with Adaptive Balancing Current Control," Energies, MDPI, vol. 11(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun-Chung Wang & Chun-Yu Liu & Yi-Hua Liu, 2018. "A Fast Equalizer with Adaptive Balancing Current Control," Energies, MDPI, vol. 11(5), pages 1-15, April.
    2. Shungang Xu & Kai Gao & Xiaobing Zhang & Kangle Li, 2019. "Double-Layer E-Structure Equalization Circuit for Series Connected Battery Strings," Energies, MDPI, vol. 12(22), pages 1-16, November.
    3. Chusheng Lu & Longyun Kang & Shubiao Wang & Zefeng Wang & Huabing Rao, 2018. "A Novel Inductor-Based Non-Dissipative Equalizer," Energies, MDPI, vol. 11(10), pages 1-14, October.
    4. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2019. "Zero Current Switching Switched-Capacitors Balancing Circuit for Energy Storage Cell Equalization and Its Associated Hybrid Circuit with Classical Buck-Boost," Energies, MDPI, vol. 12(14), pages 1-15, July.
    5. Xintian Liu & Yafei Sun & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2017. "Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits," Energies, MDPI, vol. 10(10), pages 1-16, September.
    6. Chusheng Lu & Longyun Kang & Xuan Luo & Jinqing Linghu & Hongye Lin, 2019. "A Novel Lithium Battery Equalization Circuit with Any Number of Inductors," Energies, MDPI, vol. 12(24), pages 1-14, December.
    7. Hongrui Liu & Bo Li & Yixuan Guo & Chunfeng Du & Shilong Chen & Sizhao Lu, 2018. "Research into an Efficient Energy Equalizer for Lithium-Ion Battery Packs," Energies, MDPI, vol. 11(12), pages 1-11, December.
    8. Jiayu Wang & Shuailong Dai & Xi Chen & Xiang Zhang & Zhifei Shan, 2019. "Bidirectional Multi-Input and Multi-Output Energy Equalization Circuit for the Li-Ion Battery String Based on the Game Theory," Complexity, Hindawi, vol. 2019, pages 1-17, June.
    9. Yat Chi Fong & Ka Wai Eric Cheng & S. Raghu Raman & Xiaolin Wang, 2018. "Multi-Port Zero-Current Switching Switched-Capacitor Converters for Battery Management Applications," Energies, MDPI, vol. 11(8), pages 1-17, July.
    10. Sekhar Raghu Raman & Ka-Wai (Eric) Cheng & Xiang-Dang Xue & Yat-Chi Fong & Simon Cheung, 2021. "Hybrid Energy Storage System with Vehicle Body Integrated Super-Capacitor and Li-Ion Battery: Model, Design and Implementation, for Distributed Energy Storage," Energies, MDPI, vol. 14(20), pages 1-22, October.
    11. João P. D. Miranda & Luis A. M. Barros & José Gabriel Pinto, 2023. "A Review on Power Electronic Converters for Modular BMS with Active Balancing," Energies, MDPI, vol. 16(7), pages 1-20, April.
    12. Ricardo Velho & Miguel Beirão & Maria Do Rosário Calado & José Pombo & João Fermeiro & Sílvio Mariano, 2017. "Management System for Large Li-Ion Battery Packs with a New Adaptive Multistage Charging Method," Energies, MDPI, vol. 10(5), pages 1-21, May.
    13. Yuanmao Ye & Ka Wai Eric Cheng, 2016. "An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings," Energies, MDPI, vol. 9(3), pages 1-15, February.
    14. Murat Ceylan & Abdulkadir Balikci, 2023. "An Intermodular Active Balancing Topology for Efficient Operation of High Voltage Battery Packs in Li-Ion Based Energy Storage Systems: Switched (Flying) DC/DC Converter," Energies, MDPI, vol. 16(15), pages 1-22, July.
    15. Das, Utpal Kumar & Shrivastava, Prashant & Tey, Kok Soon & Bin Idris, Mohd Yamani Idna & Mekhilef, Saad & Jamei, Elmira & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Advancement of lithium-ion battery cells voltage equalization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Sang-Won Lee & Yoon-Geol Choi & Bongkoo Kang, 2019. "Active Charge Equalizer of Li-Ion Battery Cells Using Double Energy Carriers," Energies, MDPI, vol. 12(12), pages 1-13, June.
    17. Yunlong Shang & Qi Zhang & Naxin Cui & Chenghui Zhang, 2017. "A Cell-to-Cell Equalizer Based on Three-Resonant-State Switched-Capacitor Converters for Series-Connected Battery Strings," Energies, MDPI, vol. 10(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1011-:d:104936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.