IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p342-d92755.html
   My bibliography  Save this article

Numerical Investigation of Periodic Fluctuations in Energy Efficiency in Centrifugal Pumps at Different Working Points

Author

Listed:
  • Hehui Zhang

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Shengxiang Deng

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Yingjie Qu

    (Hunan M &W Energy Saving Tech. Co., Ltd., Changsha 410208, China)

Abstract

In order to simulate the energy efficiency fluctuation behavior of an industrial centrifugal pump with a six-blade impeller, a full-scale three-dimensional (3D) an unsteady state computational fluid dynamics (CFD) model was used. Five operational points with different flow fluxes were numerically investigated by using the Navier–Stokes code with shear-stress transport (SST) k-ω turbulence model. The predicted performance curves agreed well with the test data. A sine function was fitted to the transient calculation results and the results show that the efficiency fluctuates mainly on the blade passing frequency, while the fluctuation level varies with flow rate. Furthermore, high efficiency is not necessarily associated with low fluctuation level. The efficiency fluctuation level is high at part-load points, and becomes relatively low when flow rate exceeds the design value. The effect of change in torque is greater than that of the head lift with respect to fluctuations of efficiency. Based upon the analysis of velocity vector distribution of different impeller phase positions, a hypothesis which considers both the effect of pump’s structural shape and flow fluxes was proposed to explain the above behavior by analyzing the impeller–tongue interaction. This work enriches the theoretical system of flow parameters fluctuation of centrifugal pump, and provides useful insight for the optimal design of centrifugal pumps.

Suggested Citation

  • Hehui Zhang & Shengxiang Deng & Yingjie Qu, 2017. "Numerical Investigation of Periodic Fluctuations in Energy Efficiency in Centrifugal Pumps at Different Working Points," Energies, MDPI, vol. 10(3), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:342-:d:92755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Tan & Baoshan Zhu & Shuliang Cao & Yuchuan Wang & Binbin Wang, 2014. "Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump," Energies, MDPI, vol. 7(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjørn H. Hjertager, 2017. "Engineering Fluid Dynamics," Energies, MDPI, vol. 10(10), pages 1-2, September.
    2. Xiaoran Zhao & Yongyao Luo & Zhengwei Wang & Yexiang Xiao & François Avellan, 2019. "Unsteady Flow Numerical Simulations on Internal Energy Dissipation for a Low-Head Centrifugal Pump at Part-Load Operating Conditions," Energies, MDPI, vol. 12(10), pages 1-20, May.
    3. Luo, Xianwu & Ye, Weixiang & Huang, Renfang & Wang, Yiwei & Du, Tezhuan & Huang, Chenguang, 2020. "Numerical investigations of the energy performance and pressure fluctuations for a waterjet pump in a non-uniform inflow," Renewable Energy, Elsevier, vol. 153(C), pages 1042-1052.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
    2. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower," Renewable Energy, Elsevier, vol. 135(C), pages 1144-1156.
    4. Genglin Chen & Wei Xu & Jinyun Zhao & Haipeng Zhang, 2018. "Energy-Saving Performance of Flap-Adjustment-Based Centrifugal Fan," Energies, MDPI, vol. 11(1), pages 1-14, January.
    5. Yabin Liu & Lei Tan & Ming Liu & Yue Hao & Yun Xu, 2017. "Influence of Prewhirl Angle and Axial Distance on Energy Performance and Pressure Fluctuation for a Centrifugal Pump with Inlet Guide Vanes," Energies, MDPI, vol. 10(5), pages 1-14, May.
    6. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.
    7. Jiaxing Lu & Xiaobing Liu & Yongzhong Zeng & Baoshan Zhu & Bo Hu & Hong Hua, 2020. "Investigation of the Noise Induced by Unstable Flow in a Centrifugal Pump," Energies, MDPI, vol. 13(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:342-:d:92755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.