IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1830-d118430.html
   My bibliography  Save this article

An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy

Author

Listed:
  • Muhammad Ali

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Dae-Hee Son

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Sang-Hee Kang

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Soon-Ryul Nam

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

Abstract

Current transformer (CT) saturation is one of the significant problems for protection engineers. If CT saturation is not tackled properly, it can cause a disastrous effect on the stability of the power system, and may even create a complete blackout. To cope with CT saturation properly, an accurate detection or classification should be preceded. Recently, deep learning (DL) methods have brought a subversive revolution in the field of artificial intelligence (AI). This paper presents a new DL classification method based on unsupervised feature extraction and supervised fine-tuning strategy to classify the saturated and unsaturated regions in case of CT saturation. In other words, if protection system is subjected to a CT saturation, proposed method will correctly classify the different levels of saturation with a high accuracy. Traditional AI methods are mostly based on supervised learning and rely heavily on human crafted features. This paper contributes to an unsupervised feature extraction, using autoencoders and deep neural networks (DNNs) to extract features automatically without prior knowledge of optimal features. To validate the effectiveness of proposed method, a variety of simulation tests are conducted, and classification results are analyzed using standard classification metrics. Simulation results confirm that proposed method classifies the different levels of CT saturation with a remarkable accuracy and has unique feature extraction capabilities. Lastly, we provided a potential future research direction to conclude this paper.

Suggested Citation

  • Muhammad Ali & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2017. "An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy," Energies, MDPI, vol. 10(11), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1830-:d:118430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. BeomJun Park & Jin Hur, 2017. "Accurate Short-Term Power Forecasting of Wind Turbines: The Case of Jeju Island’s Wind Farm," Energies, MDPI, vol. 10(6), pages 1-15, June.
    2. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    3. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    4. Zhi-Xin Yang & Xian-Bo Wang & Jian-Hua Zhong, 2016. "Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach," Energies, MDPI, vol. 9(6), pages 1-17, May.
    5. Luyu Ji & Junyong Wu & Yanzhen Zhou & Liangliang Hao, 2016. "Using Trajectory Clusters to Define the Most Relevant Features for Transient Stability Prediction Based on Machine Learning Method," Energies, MDPI, vol. 9(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanlei Dang & Yong Xiao & Baoshuai Wang & Dingqu Zhang & Bo Zhang & Shanshan Hu & Hongtian Song & Chi Xu & Yiqin Cai, 2023. "A High-Precision Error Calibration Technique for Current Transformers under the Influence of DC Bias," Energies, MDPI, vol. 16(24), pages 1-19, December.
    2. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    3. Minghui Ou & Hua Wei & Yiyi Zhang & Jiancheng Tan, 2019. "A Dynamic Adam Based Deep Neural Network for Fault Diagnosis of Oil-Immersed Power Transformers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Ismoil Odinaev & Andrey Pazderin & Murodbek Safaraliev & Firuz Kamalov & Mihail Senyuk & Pavel Y. Gubin, 2024. "Detection of Current Transformer Saturation Based on Machine Learning," Mathematics, MDPI, vol. 12(3), pages 1-18, January.
    5. Sopheap Key & Chang-Sung Ko & Kwang-Jae Song & Soon-Ryul Nam, 2023. "Fast Detection of Current Transformer Saturation Using Stacked Denoising Autoencoders," Energies, MDPI, vol. 16(3), pages 1-16, February.
    6. Shahriar Rahman Fahim & Subrata K. Sarker & S. M. Muyeen & Md. Rafiqul Islam Sheikh & Sajal K. Das, 2020. "Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews," Energies, MDPI, vol. 13(13), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    2. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    3. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Boram Kim & Sunghwan Bae & Hongseok Kim, 2017. "Optimal Energy Scheduling and Transaction Mechanism for Multiple Microgrids," Energies, MDPI, vol. 10(4), pages 1-17, April.
    5. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    6. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    7. Jin-Young Kim & Sung-Bae Cho, 2019. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder," Energies, MDPI, vol. 12(4), pages 1-14, February.
    8. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2023. "Audit-Based Energy Performance Analysis of Multifamily Buildings in South-East Poland," Energies, MDPI, vol. 16(12), pages 1-21, June.
    9. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    10. Zengping Wang & Bing Zhao & Haibo Guo & Lingling Tang & Yuexing Peng, 2019. "Deep Ensemble Learning Model for Short-Term Load Forecasting within Active Learning Framework," Energies, MDPI, vol. 12(20), pages 1-13, October.
    11. Vincent, Immanuel & Lee, Eun-Chong & Cha, Kyung-Ho & Kim, Hyung-Man, 2021. "The WASP model on the symbiotic strategy of renewable and nuclear power for the future of ‘Renewable Energy 3020’ policy in South Korea," Renewable Energy, Elsevier, vol. 172(C), pages 929-940.
    12. Xueliang Li & Bingkang Li & Long Zhao & Huiru Zhao & Wanlei Xue & Sen Guo, 2019. "Forecasting the Short-Term Electric Load Considering the Influence of Air Pollution Prevention and Control Policy via a Hybrid Model," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    13. Zhen Chen & Xiaoyan Han & Chengwei Fan & Tianwen Zheng & Shengwei Mei, 2019. "A Two-Stage Feature Selection Method for Power System Transient Stability Status Prediction," Energies, MDPI, vol. 12(4), pages 1-15, February.
    14. Arpita Samanta Santra & Jun-Lin Lin, 2019. "Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(11), pages 1-11, May.
    15. Rafik Nafkha & Tomasz Ząbkowski & Krzysztof Gajowniczek, 2021. "Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers," Energies, MDPI, vol. 14(8), pages 1-17, April.
    16. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    17. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    18. Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
    19. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
    20. Muhammad Waseem Ahmad & Anthony Mouraud & Yacine Rezgui & Monjur Mourshed, 2018. "Deep Highway Networks and Tree-Based Ensemble for Predicting Short-Term Building Energy Consumption," Energies, MDPI, vol. 11(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1830-:d:118430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.