IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i7p98-d865081.html
   My bibliography  Save this article

SBGTool v2.0: An Empirical Study on a Similarity-Based Grouping Tool for Students’ Learning Outcomes

Author

Listed:
  • Zeynab (Artemis) Mohseni

    (Department of Computer Science and Media Technology, Linnaeus University, 351 95 Växjö, Sweden)

  • Rafael M. Martins

    (Department of Computer Science and Media Technology, Linnaeus University, 351 95 Växjö, Sweden)

  • Italo Masiello

    (Department of Computer Science and Media Technology, Linnaeus University, 351 95 Växjö, Sweden)

Abstract

Visual learning analytics (VLA) tools and technologies enable the meaningful exchange of information between educational data and teachers. This allows teachers to create meaningful groups of students based on possible collaboration and productive discussions. VLA tools also allow a better understanding of students’ educational demands. Finding similar samples in huge educational datasets, however, involves the use of effective similarity measures that represent the teacher’s purpose. In this study, we conducted a user study and improved our web-based similarity-based grouping VLA tool, (SBGTool) to help teachers categorize students into groups based on their similar learning outcomes and activities. SBGTool v2.0 differs from SBGTool due to design changes made in response to teacher suggestions, the addition of sorting options to the dashboard table, the addition of a dropdown component to group the students into classrooms, and improvement in some visualizations. To counteract color blindness, we have also considered a number of color palettes. By applying SBGTool v2.0, teachers may compare the outcomes of individual students inside a classroom, determine which subjects are the most and least difficult over the period of a week or an academic year, identify the numbers of correct and incorrect responses for the most difficult and easiest subjects, categorize students into various groups based on their learning outcomes, discover the week with the most interactions for examining students’ engagement, and find the relationship between students’ activity and study success. We used 10,000 random samples from the EdNet dataset, a large-scale hierarchical educational dataset consisting of student–system interactions from multiple platforms at the university level, collected over a two-year period, to illustrate the tool’s efficacy. Finally, we provide the outcomes of the user study that evaluated the tool’s effectiveness. The results revealed that even with limited training, the participants were able to complete the required analysis tasks. Additionally, the participants’ feedback showed that the SBGTool v2.0 gained a good level of support for the given tasks, and it had the potential to assist teachers in enhancing collaborative learning in their classrooms.

Suggested Citation

  • Zeynab (Artemis) Mohseni & Rafael M. Martins & Italo Masiello, 2022. "SBGTool v2.0: An Empirical Study on a Similarity-Based Grouping Tool for Students’ Learning Outcomes," Data, MDPI, vol. 7(7), pages 1-18, July.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:7:p:98-:d:865081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/7/98/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/7/98/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    2. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    3. Li, Hui & Sun, Jie, 2009. "Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II," European Journal of Operational Research, Elsevier, vol. 197(1), pages 214-224, August.
    4. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    5. Min-feng Lee & Guey-shya Chen & Shao-pin Lin & Wei-jie Wang, 2022. "A Data Mining Study on House Price in Central Regions of Taiwan Using Education Categorical Data, Environmental Indicators, and House Features Data," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    6. Caruso, Germán & Scartascini, Carlos & Tommasi, Mariano, 2015. "Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization," European Journal of Political Economy, Elsevier, vol. 38(C), pages 212-228.
    7. MARIA Dan Stefan, 2009. "Improving The Quality Of The Decision Making By Using Business Intelligence Solutions," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 4(1), pages 996-1000, May.
    8. M. Almiñana & L. Escudero & A. Pérez-Martín & A. Rabasa & L. Santamaría, 2014. "A classification rule reduction algorithm based on significance domains," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 397-418, April.
    9. Silvia Figini & Ron Kenett & SILVIA SALINI, 2010. "Integrating Operational and Financial Risk Assessments," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1099, Universitá degli Studi di Milano.
    10. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
    11. Onur Doğan & Hakan Aşan & Ejder Ayç, 2015. "Use Of Data Mining Techniques In Advance Decision Making Processes In A Local Firm," European Journal of Business and Economics, Central Bohemia University, vol. 10(2), pages 6821:10-682, January.
    12. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    13. Nieminen, Paavo & Pölönen, Ilkka & Sipola, Tuomo, 2013. "Research literature clustering using diffusion maps," Journal of Informetrics, Elsevier, vol. 7(4), pages 874-886.
    14. Patricia E. N. Lutu & Andries P. Engelbrecht, 2013. "Base Model Combination Algorithm for Resolving Tied Predictions for K -Nearest Neighbor OVA Ensemble Models," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 517-526, August.
    15. Pooyan Ramezani Besheli & Mehdi Zare & Ramezan Ramezani Umali & Gholamreza Nakhaeezadeh, 2015. "Zoning Iran based on earthquake precursor importance and introducing a main zone using a data-mining process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 821-835, September.
    16. Adrien Jamain & David Hand, 2008. "Mining Supervised Classification Performance Studies: A Meta-Analytic Investigation," Journal of Classification, Springer;The Classification Society, vol. 25(1), pages 87-112, June.
    17. Fang, Jiali & Jacobsen, Ben & Qin, Yafeng, 2014. "Predictability of the simple technical trading rules: An out-of-sample test," Review of Financial Economics, Elsevier, vol. 23(1), pages 30-45.
    18. Marcin Chlebus & Zuzanna Osika, 2020. "Comparison of tree-based models performance in prediction of marketing campaign results using Explainable Artificial Intelligence tools," Working Papers 2020-15, Faculty of Economic Sciences, University of Warsaw.
    19. Silvia Figini & Roberto Savona & Marika Vezzoli, 2016. "Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 6-20, January.
    20. Mircea Andrei SCRIDON, 2008. "Understanding Customers - Profiling And Segmentation," Management and Marketing Journal, University of Craiova, Faculty of Economics and Business Administration, vol. 6(1), pages 175-184, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:7:p:98-:d:865081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.