Author
Listed:
- Cátia Ribeiro
(Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)
- Diogo M. F. Santos
(Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)
Abstract
Ammonia production is a cornerstone of the modern chemical industry, essential for fertilizer manufacturing and increasingly relevant in the energy sector. However, the conventional Haber–Bosch (HB) process is highly energy- and carbon-intensive, contributing significantly to global greenhouse gas emissions, releasing approximately 1.6 tonnes of carbon dioxide for every tonne of ammonia produced. In the context of the ongoing climate crisis, exploring sustainable alternatives that can reduce or even eradicate these emissions is imperative. This review examines the potential of ammonia as a future energy carrier and evaluates the transition to green hydrogen-based HB production. Key technologies for green hydrogen generation are reviewed in conjunction with environmental, energy, and economic considerations. The transition to a green hydrogen-based HB process has been demonstrated to offer significant environmental advantages, potentially reducing carbon emissions by up to eight times compared to the conventional method. Furthermore, the economic viability of this process is particularly pronounced under conditions of low-cost renewable electricity, whether utilizing solid oxide electrolysis cells or proton-exchange membrane electrolyzers. Additionally, two emerging zero-emission, electrochemical routes for ammonia synthesis are analyzed in terms of their methodologies, efficiencies, and economic viability. Promising progress has been made in both direct and indirect nitrogen reduction approaches to ammonia. The indirect lithium-mediated pathway demonstrates the greatest potential, significantly reducing ammonia production costs. Despite existing challenges, particularly related to efficiency, these emerging technologies offer decentralized, electrified pathways for sustainable ammonia production in the future. This study highlights the near-term feasibility of decarbonizing ammonia production through green hydrogen in the HB process, while outlining the long-term potential of electrochemical nitrogen reduction as a sustainable alternative once the technology matures.
Suggested Citation
Cátia Ribeiro & Diogo M. F. Santos, 2025.
"Transitioning Ammonia Production: Green Hydrogen-Based Haber–Bosch and Emerging Nitrogen Reduction Technologies,"
Clean Technol., MDPI, vol. 7(2), pages 1-26, June.
Handle:
RePEc:gam:jcltec:v:7:y:2025:i:2:p:49-:d:1679641
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:7:y:2025:i:2:p:49-:d:1679641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.