IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i11p180-d183396.html
   My bibliography  Save this article

How Does Water-Stressed Corn Respond to Potassium Nutrition? A Shoot-Root Scale Approach Study under Controlled Conditions

Author

Listed:
  • Lionel Jordan-Meille

    (ISPA, Bordeaux Sciences Agro, UMR 1391, INRA, 33140 Villenave d’Ornon, France)

  • Elsa Martineau

    (ISPA, Bordeaux Sciences Agro, UMR 1391, INRA, 33140 Villenave d’Ornon, France)

  • Yoran Bornot

    (INRA UMR 1137 Ecologie et Ecophysiologie Forestières, 54280 Champenoux, France)

  • José Lavres

    (USP-CENA, Plant Nutrition Laboratory, University of Sao Paulo, Piracicaba, SP 13416-000, Brazil)

  • Cassio Hamilton Abreu-Junior

    (USP-CENA, Plant Nutrition Laboratory, University of Sao Paulo, Piracicaba, SP 13416-000, Brazil)

  • Jean-Christophe Domec

    (ISPA, Bordeaux Sciences Agro, UMR 1391, INRA, 33140 Villenave d’Ornon, France)

Abstract

Potassium (K) is generally considered as being closely linked to plant water dynamics. Consequently, reinforcing K nutrition, which theoretically favors root growth and specific surface, extends leaf lifespan, and regulates stomatal functioning, is often used to tackle water stress. We designed a greenhouse pot-scale device to test these interactions on corn ( Zea mays L.), and to analyze their links to plant transpiration. Three levels of K nutrition were combined with two water-supply treatments. Shoot and root development and growth were continuously measured during a 60-day-long experiment. Individual plant transpiration was measured by weighing pots and by calculating water mass balances. The results showed that, although K deficiency symptoms resembled those caused by water shortage, there was no advantage to over-fertilizing water-stressed plants. K failed to decrease either the transpiration per unit leaf surface or to improve water use efficiency. The link between K nutrition and plant transpiration appears solely attributable to the effect of K on leaf area. We conclude that K over-fertilization could ultimately jeopardize crops by enhancing early-stage water transpiration to the detriment of later developmental stages.

Suggested Citation

  • Lionel Jordan-Meille & Elsa Martineau & Yoran Bornot & José Lavres & Cassio Hamilton Abreu-Junior & Jean-Christophe Domec, 2018. "How Does Water-Stressed Corn Respond to Potassium Nutrition? A Shoot-Root Scale Approach Study under Controlled Conditions," Agriculture, MDPI, vol. 8(11), pages 1-18, November.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:11:p:180-:d:183396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/11/180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/11/180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    2. Zhang, Junxiao & Wang, Qianqing & Xia, Guimin & Wu, Qi & Chi, Daocai, 2021. "Continuous regulated deficit irrigation enhances peanut water use efficiency and drought resistance," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    4. Leghari, Shah Jahan & Hu, Kelin & Wei, Yichang & Wang, Tongchao & Bhutto, Tofique Ahmed & Buriro, Mahmooda, 2021. "Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Robert Malone & Jurgen Garbrecht & Phillip Busteed & Jerry Hatfield & Dennis Todey & Jade Gerlitz & Quanxiao Fang & Matthew Sima & Anna Radke & Liwang Ma & Zhiming Qi & Huaiqing Wu & Dan Jaynes & Thom, 2020. "Drainage N Loads Under Climate Change with Winter Rye Cover Crop in a Northern Mississippi River Basin Corn-Soybean Rotation," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    7. Zhang, Jing & Zhang, Huihui & Sima, Matthew W. & Trout, Thomas J. & Malone, Rob W. & Wang, Li, 2021. "Simulated deficit irrigation and climate change effects on sunflower production in Eastern Colorado with CSM-CROPGRO-Sunflower in RZWQM2," Agricultural Water Management, Elsevier, vol. 246(C).
    8. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    9. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:11:p:180-:d:183396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.