Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dimitris Mourtzis & John Angelopoulos & Nikos Panopoulos, 2022. "A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0," Energies, MDPI, vol. 15(17), pages 1-29, August.
- Min Dai & Yutian Shen & Xiaoyin Li & Jingjing Liu & Shanwen Zhang & Hong Miao, 2024. "Digital Twin System of Pest Management Driven by Data and Model Fusion," Agriculture, MDPI, vol. 14(7), pages 1-19, July.
- Houda Orchi & Mohamed Sadik & Mohammed Khaldoun & Essaid Sabir, 2023. "Automation of Crop Disease Detection through Conventional Machine Learning and Deep Transfer Learning Approaches," Agriculture, MDPI, vol. 13(2), pages 1-35, January.
- Jin, Kaijun & Zhang, Jihong & Wang, Zhenhua & Zhang, Jinzhu & Liu, Ningning & Li, Miao & Ma, Zhanli, 2024. "Application of deep learning based on thermal images to identify the water stress in cotton under film-mulched drip irrigation," Agricultural Water Management, Elsevier, vol. 299(C).
- Hoda Galal & Salah Elsayed & Osama Elsherbiny & Aida Allam & Mohamed Farouk, 2022. "Using RGB Imaging, Optimized Three-Band Spectral Indices, and a Decision Tree Model to Assess Orange Fruit Quality," Agriculture, MDPI, vol. 12(10), pages 1-19, September.
- Osama Elsherbiny & Yangyang Fan & Lei Zhou & Zhengjun Qiu, 2021. "Fusion of Feature Selection Methods and Regression Algorithms for Predicting the Canopy Water Content of Rice Based on Hyperspectral Data," Agriculture, MDPI, vol. 11(1), pages 1-21, January.
- Yang Yang & Min Lin & Yangfei Lin & Chen Zhang & Celimuge Wu, 2025. "A Survey of Blockchain Applications for Management in Agriculture and Livestock Internet of Things," Future Internet, MDPI, vol. 17(1), pages 1-54, January.
- Yulin Shen & Benoît Mercatoris & Zhen Cao & Paul Kwan & Leifeng Guo & Hongxun Yao & Qian Cheng, 2022. "Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery," Agriculture, MDPI, vol. 12(6), pages 1-13, June.
- Nahina Islam & Md Mamunur Rashid & Santoso Wibowo & Cheng-Yuan Xu & Ahsan Morshed & Saleh A. Wasimi & Steven Moore & Sk Mostafizur Rahman, 2021. "Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
- Martin Kuradusenge & Eric Hitimana & Damien Hanyurwimfura & Placide Rukundo & Kambombo Mtonga & Angelique Mukasine & Claudette Uwitonze & Jackson Ngabonziza & Angelique Uwamahoro, 2023. "Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize," Agriculture, MDPI, vol. 13(1), pages 1-19, January.
- Ziang Niu & Ting Huang & Chengjia Xu & Xinyue Sun & Mohamed Farag Taha & Yong He & Zhengjun Qiu, 2025. "A Novel Approach to Optimize Key Limitations of Azure Kinect DK for Efficient and Precise Leaf Area Measurement," Agriculture, MDPI, vol. 15(2), pages 1-20, January.
- Yafei Wang & Tiezhu Li & Tianhua Chen & Xiaodong Zhang & Mohamed Farag Taha & Ning Yang & Hanping Mao & Qiang Shi, 2024. "Cucumber Downy Mildew Disease Prediction Using a CNN-LSTM Approach," Agriculture, MDPI, vol. 14(7), pages 1-17, July.
- Jinmei Kou & Long Duan & Caixia Yin & Lulu Ma & Xiangyu Chen & Pan Gao & Xin Lv, 2022. "Predicting Leaf Nitrogen Content in Cotton with UAV RGB Images," Sustainability, MDPI, vol. 14(15), pages 1-10, July.
- Suk-Ju Hong & Sang-Yeon Kim & Eungchan Kim & Chang-Hyup Lee & Jung-Sup Lee & Dong-Soo Lee & Jiwoong Bang & Ghiseok Kim, 2020. "Moth Detection from Pheromone Trap Images Using Deep Learning Object Detectors," Agriculture, MDPI, vol. 10(5), pages 1-12, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peng Wang & Jiang Liu & Lijia Xu & Peng Huang & Xiong Luo & Yan Hu & Zhiliang Kang, 2021. "Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
- Benjamin Costello & Olusegun O. Osunkoya & Juan Sandino & William Marinic & Peter Trotter & Boyang Shi & Felipe Gonzalez & Kunjithapatham Dhileepan, 2022. "Detection of Parthenium Weed ( Parthenium hysterophorus L.) and Its Growth Stages Using Artificial Intelligence," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
- Ravi Shankar & Laxmi Gupta, 2024. "Modelling risks in transition from Industry 4.0 to Industry 5.0," Annals of Operations Research, Springer, vol. 342(2), pages 1275-1320, November.
- Hsing-Chun Hung & Yuh-Wen Chen, 2023. "Striving to Achieve United Nations Sustainable Development Goals of Taiwanese SMEs by Adopting Industry 4.0," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
- Vasileios Moysiadis & Georgios Kokkonis & Stamatia Bibi & Ioannis Moscholios & Nikolaos Maropoulos & Panagiotis Sarigiannidis, 2023. "Monitoring Mushroom Growth with Machine Learning," Agriculture, MDPI, vol. 13(1), pages 1-17, January.
- Philani Nduna Zincume & Maria Maier, 2025. "Human-centred SME factories: the future of work in SMEs under industry 5.0," Future Business Journal, Springer, vol. 11(1), pages 1-13, December.
- Chin-Hung Kuan & Yungho Leu & Wen-Shin Lin & Chien-Pang Lee, 2022. "The Estimation of the Long-Term Agricultural Output with a Robust Machine Learning Prediction Model," Agriculture, MDPI, vol. 12(8), pages 1-15, July.
- Peipei Chen & Jianguo Dai & Guoshun Zhang & Wenqing Hou & Zhengyang Mu & Yujuan Cao, 2024. "Diagnosis of Cotton Nitrogen Nutrient Levels Using Ensemble MobileNetV2FC, ResNet101FC, and DenseNet121FC," Agriculture, MDPI, vol. 14(4), pages 1-18, March.
- Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
- Jin, Kaijun & Zhang, Jihong & Liu, Ningning & Li, Miao & Ma, Zhanli & Wang, Zhenhua & Zhang, Jinzhu & Yin, Feihu, 2025. "Improved MobileVit deep learning algorithm based on thermal images to identify the water state in cotton," Agricultural Water Management, Elsevier, vol. 310(C).
- Padmanathan Kasinathan & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Vigna Kumaran Ramachandaramurthy & Vinoth Ramanathan & Senthilkumar Subramanian & Sachin Kumar & Kamalakannan Nandhagopal & , 2022. "Realization of Sustainable Development Goals with Disruptive Technologies by Integrating Industry 5.0, Society 5.0, Smart Cities and Villages," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
- Dimitris Mourtzis & John Angelopoulos & Nikos Panopoulos, 2023. "The Future of the Human–Machine Interface (HMI) in Society 5.0," Future Internet, MDPI, vol. 15(5), pages 1-25, April.
- Dana Čirjak & Ivan Aleksi & Darija Lemic & Ivana Pajač Živković, 2023. "EfficientDet-4 Deep Neural Network-Based Remote Monitoring of Codling Moth Population for Early Damage Detection in Apple Orchard," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
- Chunfeng Gao & Xingjie Ji & Qiang He & Zheng Gong & Heguang Sun & Tiantian Wen & Wei Guo, 2023. "Monitoring of Wheat Fusarium Head Blight on Spectral and Textural Analysis of UAV Multispectral Imagery," Agriculture, MDPI, vol. 13(2), pages 1-16, January.
- Mateusz Malarczyk & Mateusz Zychlewicz & Radoslaw Stanislawski & Marcin Kaminski, 2023. "Electric Drive with an Adaptive Controller and Wireless Communication System," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
- Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
- Z. K. Mohammed & A. A. Zaidan & H. B. Aris & Hassan A. Alsattar & Sarah Qahtan & Muhammet Deveci & Dursun Delen, 2024. "Bitcoin network-based anonymity and privacy model for metaverse implementation in Industry 5.0 using linear Diophantine fuzzy sets," Annals of Operations Research, Springer, vol. 342(2), pages 1193-1233, November.
- Haotian Pei & Youqiang Sun & He Huang & Wei Zhang & Jiajia Sheng & Zhiying Zhang, 2022. "Weed Detection in Maize Fields by UAV Images Based on Crop Row Preprocessing and Improved YOLOv4," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
- Ruixue Zhang & Huate Zhu & Qinglin Chang & Qirong Mao, 2025. "A Comprehensive Review of Digital Twins Technology in Agriculture," Agriculture, MDPI, vol. 15(9), pages 1-25, April.
- Nur Adibah Mohidem & Nik Norasma Che’Ya & Abdul Shukor Juraimi & Wan Fazilah Fazlil Ilahi & Muhammad Huzaifah Mohd Roslim & Nursyazyla Sulaiman & Mohammadmehdi Saberioon & Nisfariza Mohd Noor, 2021. "How Can Unmanned Aerial Vehicles Be Used for Detecting Weeds in Agricultural Fields?," Agriculture, MDPI, vol. 11(10), pages 1-27, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:6:p:582-:d:1608607. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.