IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i16p1757-d1725934.html
   My bibliography  Save this article

Shade Nets Increase Plant Growth but Not Fruit Yield in Organic Jalapeño Pepper ( Capsicum annuum L.)

Author

Listed:
  • Mamata Bashyal

    (Department of Horticulture, University of Georgia, Tifton, GA 31793, USA)

  • Timothy W. Coolong

    (Department of Horticulture, University of Georgia, Athens, GA 30602, USA)

  • Juan Carlos Díaz-Pérez

    (Department of Horticulture, University of Georgia, Tifton, GA 31793, USA)

Abstract

Colored shade nets have gained attention due to their ability to reduce light intensity and alter the light spectrum, thereby influencing vegetable crop quality and yield. However, limited research has examined their effects on jalapeño pepper ( Capsicum annuum L.) growth and yield. This study evaluated the impact of four nets—black, red, silver, and white (40% shade factor)—compared to an unshaded control. The red net altered light quality by increasing the proportion of red and far-red wavelengths, while the other nets reduced light intensity without spectral modification. Although differences in mean air temperature were minimal between shaded and unshaded conditions, root zone temperatures were consistently lower under shade nets. Shade treatments significantly increased plant height, stem diameter, and leaf chlorophyll content relative to the unshaded control. The highest rates of leaf transpiration and stomatal conductance were recorded under unshaded and white net conditions. Net photosynthesis, electron transport rate, intercellular CO 2 concentration, or photosynthetic water use efficiency were similar among net treatments. Marketable and total yields did not differ significantly among net treatments in either year; however, in 2021, they were positively associated with light intensity. In conclusion, while colored shade nets promoted vegetative growth, they did not enhance fruit yield relative to unshaded conditions in jalapeño pepper.

Suggested Citation

  • Mamata Bashyal & Timothy W. Coolong & Juan Carlos Díaz-Pérez, 2025. "Shade Nets Increase Plant Growth but Not Fruit Yield in Organic Jalapeño Pepper ( Capsicum annuum L.)," Agriculture, MDPI, vol. 15(16), pages 1-20, August.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:16:p:1757-:d:1725934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/16/1757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/16/1757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Smith, 2000. "Phytochromes and light signal perception by plants—an emerging synthesis," Nature, Nature, vol. 407(6804), pages 585-591, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Spampinato & Salvatore Valastro & Gaetano Calogero & Emanuele Smecca & Giovanni Mannino & Valentina Arena & Raffaella Balestrini & Fabiano Sillo & Lucio Ciná & Antonino La Magna & Alessandra Alb, 2025. "Improved radicchio seedling growth under CsPbI3 perovskite rooftop in a laboratory-scale greenhouse for Agrivoltaics application," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Man Zhang & Yunping Zeng & Rong Peng & Jie Dong & Yelin Lan & Sujuan Duan & Zhenyi Chang & Jian Ren & Guanzheng Luo & Bing Liu & Kamil Růžička & Kewei Zhao & Hong-Bin Wang & Hong-Lei Jin, 2022. "N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Giacomo Salvadori & Veronica Macaluso & Giulia Pellicci & Lorenzo Cupellini & Giovanni Granucci & Benedetta Mennucci, 2022. "Protein control of photochemistry and transient intermediates in phytochromes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yuan, Yu & Ji, Yaning & Wang, Wei & Shi, Dawei & Hai, Long & Ma, Qianlei & Yang, Qichang & Xie, Yuming & Li, Bin & Wu, Gang & Ma, Lingling, 2023. "Balancing energy harvesting and crop production in a nanofluid spectral splitting covering for an active solar greenhouse," Energy, Elsevier, vol. 278(C).
    5. Louis J. Irving, 2015. "Carbon Assimilation, Biomass Partitioning and Productivity in Grasses," Agriculture, MDPI, vol. 5(4), pages 1-19, November.
    6. Monica Gagliano, 2013. "Seeing Green: The Re -discovery of Plants and Nature’s Wisdom," Societies, MDPI, vol. 3(1), pages 1-11, March.
    7. Marko Vuković & Slaven Jurić & Luna Maslov Bandić & Branka Levaj & Da-Qi Fu & Tomislav Jemrić, 2022. "Sustainable Food Production: Innovative Netting Concepts and Their Mode of Action on Fruit Crops," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    8. François Gastal & Gilles Lemaire, 2015. "Defoliation, Shoot Plasticity, Sward Structure and Herbage Utilization in Pasture: Review of the Underlying Ecophysiological Processes," Agriculture, MDPI, vol. 5(4), pages 1-26, November.
    9. Ma, Qianlei & Zhang, Yi & Wu, Gang & Yang, Qichang & Wang, Wei & Chen, Xinge & Ji, Yaning, 2023. "Study on the effect of anti-reflection film on the spectral performance of the spectral splitting covering applied to greenhouse," Energy, Elsevier, vol. 272(C).
    10. Xinying Liu & Qiying Sun & Zheng Wang & Jie He & Xin Liu & Yaliang Xu & Qingming Li, 2025. "Innovative Application Strategies of Light-Emitting Diodes in Protected Horticulture," Agriculture, MDPI, vol. 15(15), pages 1-25, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:16:p:1757-:d:1725934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.