IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1192-d1668564.html
   My bibliography  Save this article

Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan

Author

Listed:
  • Kiwamu Ishikura

    (Production Technology Group, Tokachi Agricultural Experiment Station, Hokkaido Research Organization, Memuro 082-0081, Hokkaido, Japan)

  • Nobuhiko Fueki

    (Production Technology Group, Kamikawa Agricultural Experiment Station, Hokkaido Research Organization, Pippu 078-0397, Hokkaido, Japan)

  • Katsuhisa Niwa

    (Zukosha Co., Ltd., Obihiro 080-0048, Hokkaido, Japan)

Abstract

Soil health has become increasingly important in recent years. The Hokkaido government initiated its original administrative strategy referred to as “Clean Agriculture” in 1991, before the concept of soil health and soil quality evolved in the 1990s. Also, Clean Agriculture has been integrated with remote sensing techniques for spatial application in arable fields. In this review paper, we summarized the scientific progress in Clean Agriculture and the management of soil health using remote sensing. One of the main pillars of Clean Agriculture is the minimal usage of chemical fertilizers and agrochemicals to increase soil fertility through the proper application of organic matter. The other two pillars are the sustainment and enhancement of the natural recycling function in agriculture and the enhancement of a stable production safe and high-quality agricultural products taking into account environmental harmony. These agronomic practices can increase soil fertility, maintain water quality, mitigate climate change, and maintain human health, and are similar to those in North America and the EU. Moreover, soil nitrogen fertility evaluated by autoclaved nitrogen (AC-N) can be estimated in large-scale fields and areas via remote sensing, which can facilitate variable nitrogen fertilization using variable-rate planters or broadcasters. Furthermore, systems comprising the growth sensor and variable-rate broadcaster can determine the additional nitrogen fertilization rates for winter wheat on the fields, which enhances soil health over relatively large areas. Further research is needed to expand the spatial utility of various Clean Agriculture techniques using multiperiod satellite images.

Suggested Citation

  • Kiwamu Ishikura & Nobuhiko Fueki & Katsuhisa Niwa, 2025. "Progress in “Clean Agriculture” for Nitrogen Management to Enhance the Soil Health of Arable Fields and Its Application by Remote Sensing in Hokkaido, Japan," Agriculture, MDPI, vol. 15(11), pages 1-24, May.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1192-:d:1668564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elsadig Omer & Dora Szlatenyi & Sándor Csenki & Jomana Alrwashdeh & Ivan Czako & Vince Láng, 2024. "Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review," Agriculture, MDPI, vol. 14(12), pages 1-27, November.
    2. Sushil Thapa & Ammar Bhandari & Rajan Ghimire & Qingwu Xue & Fanson Kidwaro & Shirin Ghatrehsamani & Bijesh Maharjan & Mark Goodwin, 2021. "Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    3. Peng Zhou & Yazhou Ou & Wei Yang & Yixiang Gu & Yinuo Kong & Yangxin Zhu & Chengqian Jin & Shanshan Hao, 2024. "Variable-Rate Fertilization for Summer Maize Using Combined Proximal Sensing Technology and the Nitrogen Balance Principle," Agriculture, MDPI, vol. 14(7), pages 1-17, July.
    4. Zakir Hussain & Limei Deng & Xuan Wang & Rongyang Cui & Gangcai Liu, 2022. "A Review of Farmland Soil Health Assessment Methods: Current Status and a Novel Approach," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    5. Diana H. Wall & Uffe N. Nielsen & Johan Six, 2015. "Soil biodiversity and human health," Nature, Nature, vol. 528(7580), pages 69-76, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plaas, Elke & Meyer-Wolfarth, Friederike & Banse, Martin & Bengtsson, Jan & Bergmann, Holger & Faber, Jack & Potthoff, Martin & Runge, Tania & Schrader, Stefan & Taylor, Astrid, 2019. "Towards valuation of biodiversity in agricultural soils: A case for earthworms," Ecological Economics, Elsevier, vol. 159(C), pages 291-300.
    2. Chen Fan & Yongzhan Chen & Qinxi Dong & Jing Wei & Meng Zou, 2023. "Deformation Characteristics of Combined Heavy Metals-Contaminated Soil Treated with nZVI through the Modified Slurry Consolidation Method," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    3. Clinton Carbutt & Kevin Kirkman, 2022. "Ecological Grassland Restoration—A South African Perspective," Land, MDPI, vol. 11(4), pages 1-25, April.
    4. Elizabeth M. Bach & Kelly S. Ramirez & Tandra D. Fraser & Diana H. Wall, 2020. "Soil Biodiversity Integrates Solutions for a Sustainable Future," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    5. Oksana Puzniak & Natalia Hrynchyshyn & Tetiana Datsko & Sylwia Andruszczak & Bohdan Hulko, 2022. "Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    6. Lisa Lobry de Bruyn & Susan Andrews, 2016. "Are Australian and United States Farmers Using Soil Information for Soil Health Management?," Sustainability, MDPI, vol. 8(4), pages 1-33, March.
    7. Rui Zhao & Junying Li & Kening Wu & Long Kang, 2021. "Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection," Land, MDPI, vol. 10(6), pages 1-29, June.
    8. Denis-Constantin Țopa & Sorin Căpșună & Anca-Elena Calistru & Costică Ailincăi, 2025. "Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review," Agriculture, MDPI, vol. 15(9), pages 1-38, May.
    9. Yan Wang & Mengya Ji & Min Wu & Ling Weng & Yongming Wang & Lingyi Hu & Min-Jie Cao, 2022. "Toward Green Farming Technologies: A Case Study of Oyster Shell Application in Fruit and Vegetable Production in Xiamen," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    10. Yanis Elalamy & Luc Doyen & Lauriane Mouysset, 2019. "Contribution of the land use allocation model for agroecosystems: The case of Torrecchia Vecchia," Post-Print hal-03143304, HAL.
    11. Jian Chen & Xiaopeng Yang & Dongdong Zhong & Zhen Huo & Renhua Sun & Hegan Dong, 2025. "Continuous Cropping Alters Soil Microbial Community Assembly and Co-Occurrence Network Complexity in Arid Cotton Fields," Agriculture, MDPI, vol. 15(12), pages 1-20, June.
    12. Mohammad Ghorbani & Elnaz Amirahmadi & Reinhard W. Neugschwandtner & Petr Konvalina & Marek Kopecký & Jan Moudrý & Kristýna Perná & Yves Theoneste Murindangabo, 2022. "The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    13. Xigui Li & Qing Wu & Yujie Liu, 2023. "Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    14. Rui Pinto & Cláudia Correia & Isabel Mourão & Luísa Moura & Luis Miguel Brito, 2023. "Composting Waste from the White Wine Industry," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    15. Dora Neina & Eunice Agyarko-Mintah, 2023. "Differential Impacts of Cropland Expansion on Soil Biological Indicators in Two Ecological Zones," Sustainability, MDPI, vol. 15(10), pages 1-14, May.
    16. Prisca Ayassamy, 2024. "The Relationship between Biodiversity, Circular Economy, and Institutional Investors in the Sustainable Transition: A Mixed Review," Circular Economy and Sustainability, Springer, vol. 4(4), pages 3171-3182, December.
    17. David Pires & Valeria Orlando & Raymond L. Collett & David Moreira & Sofia R. Costa & Maria L. Inácio, 2023. "Linking Nematode Communities and Soil Health under Climate Change," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    18. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    19. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    20. Abdullah Kaviani Rad & Angelika Astaykina & Rostislav Streletskii & Yeganeh Afsharyzad & Hassan Etesami & Mehdi Zarei & Siva K. Balasundram, 2022. "An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils," IJERPH, MDPI, vol. 19(8), pages 1-27, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1192-:d:1668564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.