IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1114-d1661722.html
   My bibliography  Save this article

Application of Iron-Bimetal Biochar for As and Cd Reduction and Soil Organic Carbon Preservation Under Varying Moisture

Author

Listed:
  • Frank Stephano Mabagala

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural and Rural Eco-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    Tanzania Agricultural Research Institution (TARI), TARI-Mlingano Centre, Tanga P.O. Box 5088, Tanzania)

  • Tingjuan Wang

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural and Rural Eco-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

  • Qiufen Feng

    (Hunan Cultivated Land and Agricultural Eco-Environment Institute, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China)

  • Xibai Zeng

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural and Rural Eco-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

  • Chao He

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural and Rural Eco-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

  • Cuixia Wu

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural and Rural Eco-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

  • Nan Zhang

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural and Rural Eco-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

  • Shiming Su

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural and Rural Eco-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

Abstract

The contamination of paddy soils with arsenic (As) and cadmium (Cd), coupled with the depletion of soil organic carbon (SOC), poses significant threats to rice yields and quality. There is an urgent need to identify a suitable soil additive capable of achieving simultaneous heavy metal remediation and promotion of organic matter enrichment. The current study introduced two novel iron (Fe)/magnesium (Mg)-based bimetal-oxide-modified rice straw biochar (RSB), namely RSB-Fe/Mn and RSB-Fe/Mg. It evaluated their effectiveness in As/Cd immobilization and SOC preservation. An 8-week cultivation experiment was carried out in sequential drying–flooding moisture fluctuation conditions, with the soil pore water As/Cd (PWAs/Cd) and SOC fractions monitored. The mechanisms of As/Cd immobilization were investigated using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) characterizations. Results revealed that PWAs and PWCd were reduced by up to 67.1% and 80.2% during the drying period and by 27.0% and 76.5% during the flooding period, respectively. Additionally, SOC content increased by 16.3% and 33.9% with RSB-Fe/Mn addition during the drying and flooding period, respectively, with an increase in the mineral-associated organic carbon (MAOC) fraction. The study proves that RSB-Fe/Mn and RSB-Fe/Mg are effective for soil As/Cd passivation and SOC stabilization, offering a promising solution to mitigate As and Cd pollution in paddy soils while maintaining soil quality.

Suggested Citation

  • Frank Stephano Mabagala & Tingjuan Wang & Qiufen Feng & Xibai Zeng & Chao He & Cuixia Wu & Nan Zhang & Shiming Su, 2025. "Application of Iron-Bimetal Biochar for As and Cd Reduction and Soil Organic Carbon Preservation Under Varying Moisture," Agriculture, MDPI, vol. 15(11), pages 1-23, May.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1114-:d:1661722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karine Lalonde & Alfonso Mucci & Alexandre Ouellet & Yves Gélinas, 2012. "Preservation of organic matter in sediments promoted by iron," Nature, Nature, vol. 483(7388), pages 198-200, March.
    2. Shang-Feng Tang & Hang Zhou & Wen-Tao Tan & Jun-Guo Huang & Peng Zeng & Jiao-Feng Gu & Bo-Han Liao, 2022. "Adsorption Characteristics and Mechanisms of Fe-Mn Oxide Modified Biochar for Pb(II) in Wastewater," IJERPH, MDPI, vol. 19(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke-Qing Xiao & Oliver W. Moore & Peyman Babakhani & Lisa Curti & Caroline L. Peacock, 2022. "Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yunru Chen & Liang Dong & Weikang Sui & Mingyang Niu & Xingqian Cui & Kai-Uwe Hinrichs & Fengping Wang, 2024. "Cycling and persistence of iron-bound organic carbon in subseafloor sediments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yunpeng Zhao & Chengzhu Liu & Xingqi Li & Lixiao Ma & Guoqing Zhai & Xiaojuan Feng, 2023. "Sphagnum increases soil’s sequestration capacity of mineral-associated organic carbon via activating metal oxides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Haitao Shang & Daniel H. Rothman & Gregory P. Fournier, 2022. "Oxidative metabolisms catalyzed Earth’s oxygenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    6. Laura A. Richards & Arun Kumar & Prabhat Shankar & Aman Gaurav & Ashok Ghosh & David A. Polya, 2020. "Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India," IJERPH, MDPI, vol. 17(7), pages 1-26, April.
    7. Nan Jia & Lei Li & Hui Guo & Mingyu Xie, 2024. "Important role of Fe oxides in global soil carbon stabilization and stocks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jared L. Wilmoth, 2021. "Redox Heterogeneity Entangles Soil and Climate Interactions," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    9. Han, Yu & Qi, Zhijuan & Chen, Peng & Zhang, Zhongxue & Zhou, Xin & Li, Tiecheng & Du, Sicheng & Xue, Li, 2024. "Water-saving irrigation mitigates methane emissions from paddy fields: The role of iron," Agricultural Water Management, Elsevier, vol. 298(C).
    10. Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).
    11. Thor Kolath & Lotte Reuss & Sara Egemose & Kasper Reitzel, 2020. "Reduction of Internal Phosphorus Load in New Lakes by Pretreatment of the Former Agricultural Soil—Methods, Ecological Results and Costs," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    12. Jannik Martens & Carsten W. Mueller & Prachi Joshi & Christoph Rosinger & Markus Maisch & Andreas Kappler & Michael Bonkowski & Georg Schwamborn & Lutz Schirrmeister & Janet Rethemeyer, 2023. "Stabilization of mineral-associated organic carbon in Pleistocene permafrost," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Mi Tian & Chao Wu & Xin Zhu & Qinghai Hu & Xueqiu Wang & Binbin Sun & Jian Zhou & Wei Wang & Qinghua Chi & Hanliang Liu & Yuheng Liu & Jiwu Yang & Xurong Li, 2024. "Spatial–Temporal Variations in Soil Organic Carbon and Driving Factors in Guangdong, China (2009–2023)," Land, MDPI, vol. 13(7), pages 1-18, July.
    14. Francisco Ruiz & Angelo Fraga Bernardino & Hermano Melo Queiroz & Xosé Luis Otero & Cornelia Rumpel & Tiago Osório Ferreira, 2024. "Iron’s role in soil organic carbon (de)stabilization in mangroves under land use change," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1114-:d:1661722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.