IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p938-d1131901.html
   My bibliography  Save this article

Self-Regulation of Soil Enzyme Activity and Stoichiometry under Nitrogen Addition and Plastic Film Mulching in the Loess Plateau Area, Northwest China

Author

Listed:
  • Meixia Liu

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Menglu Wang

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100081, China)

  • Congwei Sun

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100081, China)

  • Hui Wu

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Xueqing Zhao

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Enke Liu

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100081, China)

  • Wenyi Dong

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Meiling Yan

    (Yantai Academy of Agricultural Sciences, Yantai 265500, China)

Abstract

Soil extracellular enzyme activity (EA) and its eco-enzyme stoichiometric ratio (ES) are extremely sensitive to environmental change. This study aimed to clarify the change law of EA and ES in soil with different nitrogen addition levels under plastic film mulching, and to optimize the application amount of nitrogen fertilizer that was used. Based on the location experiment of plastic film mulching fertilization that has been ongoing since 2015, soil samples were collected from different depths (0–10 cm, 10–20 cm and 20–30 cm) during the harvest period of spring maize in October 2021. Four soil extracellular enzyme activities (β-1,4 glucosidase (βG), β-1, 4-N-acetylglucosidase (NAG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP)) involved in soil carbon (C), nitrogen (N) and phosphorus (P) cycling at different nitrogen application levels (0, 90, 150, 225 and 300 kg·hm −2 ) were studied under two planting patterns of no plastic film mulching (LD) and plastic film mulching (PM). The latest discovery of this study is that the activities of soil EA involved in the cycling of soil carbon C, N and P are similar in different soil depths (0–10 cm, 10–20 cm and 20–30 cm). Both E C:P and E C:P in the soil in this area are less than 1:1, indicating that the soil is limited by N and P. Comprehensive analysis showed that a nitrogen application level of 225 kg·hm −2 was beneficial to the balance of soil nutrients and the improvement of soil EA at harvest. At the same time, PM can effectively improve the soil EA and is more conducive to the balance of soil nutrients. Redundancy analysis (RDA) showed that EA and ES were strongly correlated with pH, soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP). Most importantly, this study revealed that the activity of extracellular enzymes in arid and semi-arid areas was constantly self-regulated with the addition of nitrogen, which provided theoretical and technical support for the efficient use of nitrogen under the condition of plastic film mulching.

Suggested Citation

  • Meixia Liu & Menglu Wang & Congwei Sun & Hui Wu & Xueqing Zhao & Enke Liu & Wenyi Dong & Meiling Yan, 2023. "Self-Regulation of Soil Enzyme Activity and Stoichiometry under Nitrogen Addition and Plastic Film Mulching in the Loess Plateau Area, Northwest China," Agriculture, MDPI, vol. 13(5), pages 1-11, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:938-:d:1131901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert L. Sinsabaugh & Brian H. Hill & Jennifer J. Follstad Shah, 2009. "Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment," Nature, Nature, vol. 462(7274), pages 795-798, December.
    2. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Zhiyuan Hu & Jiating Li & Kangwei Shi & Guangqian Ren & Zhicong Dai & Jianfan Sun & Xiaojun Zheng & Yiwen Zhou & Jiaqi Zhang & Guanlin Li & Daolin Du, 2021. "Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    3. Li, Cheng & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Zhang, Tibin & Dong, Qin’ge & Feng, Hao & Zhang, Wenxin & Siddique, Kadambot H.M., 2023. "Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Aziiba Emmanuel Asibi & Falong Hu & Zhilong Fan & Qiang Chai, 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    6. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Zhenqing Xia & Guixin Zhang & Shibo Zhang & Qi Wang & Yafang Fu & Haidong Lu, 2021. "Efficacy of Root Zone Temperature Increase in Root and Shoot Development and Hormone Changes in Different Maize Genotypes," Agriculture, MDPI, vol. 11(6), pages 1-13, May.
    8. C. Pérez-Brandán & J. Huidobro & M. Galván & S. Vargas-Gil & J.M. Meriles, 2016. "Relationship between microbial functions and community structure following agricultural intensification in South American Chaco," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(7), pages 321-328.
    9. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Yan, Shicheng & Zhuang, Qianlai & Cui, Ningbo & Guo, Li, 2021. "Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China," Agricultural Water Management, Elsevier, vol. 248(C).
    10. Qing Zhao & Jie Tang & Zhaoyang Li & Wei Yang & Yucong Duan, 2018. "The Influence of Soil Physico-Chemical Properties and Enzyme Activities on Soil Quality of Saline-Alkali Agroecosystems in Western Jilin Province, China," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    11. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    12. Zhang, Fan & Chen, Mengru & Fu, Jintao & Zhang, Xiangzhu & Li, Yuan & Shao, Yating & Xing, Yingying & Wang, Xiukang, 2023. "Coupling effects of irrigation amount and fertilization rate on yield, quality, water and fertilizer use efficiency of different potato varieties in Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Ye, Hong-Lian & Chen, Zhi-Gang & Jia, Ting-Ting & Su, Qian-Wei & Su, Shu-Chai, 2021. "Response of different organic mulch treatments on yield and quality of Camellia oleifera," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Susheel Bhanu Busi & Massimo Bourquin & Stilianos Fodelianakis & Grégoire Michoud & Tyler J. Kohler & Hannes Peter & Paraskevi Pramateftaki & Michail Styllas & Matteo Tolosano & Vincent Staercke & Mar, 2022. "Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Shuang Liu & Geping Luo & Hao Wang, 2020. "Temporal and Spatial Changes in Crop Water Use Efficiency in Central Asia from 1960 to 2016," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    16. Yanyu Song & Changchun Song & Jiusheng Ren & Xiuyan Ma & Wenwen Tan & Xianwei Wang & Jinli Gao & Aixin Hou, 2019. "Short-Term Response of the Soil Microbial Abundances and Enzyme Activities to Experimental Warming in a Boreal Peatland in Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    17. Yao Zhang & Junqi Wang & Lan Chen & Sha Zhou & Lu Zhang & Fazhu Zhao, 2022. "Different Response of Soil Microbial Carbon Use Efficiency in Compound of Feldspathic Sandstone and Sand," Agriculture, MDPI, vol. 13(1), pages 1-9, December.
    18. René Rietra & Marius Heinen & Oene Oenema, 2022. "A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems," Land, MDPI, vol. 11(2), pages 1-31, February.
    19. Jörg Schnecker & Birgit Wild & Florian Hofhansl & Ricardo J Eloy Alves & Jiří Bárta & Petr Čapek & Lucia Fuchslueger & Norman Gentsch & Antje Gittel & Georg Guggenberger & Angelika Hofer & Sandra Kien, 2014. "Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    20. Julian Cardenas & Fernando Santa & Eva Kaštovská, 2021. "The Exudation of Surplus Products Links Plant Functional Traits and Plant-Microbial Stoichiometry," Land, MDPI, vol. 10(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:938-:d:1131901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.