IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1941-d976331.html
   My bibliography  Save this article

Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter

Author

Listed:
  • Peng Li

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Hao Li

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Jinshan Li

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Xiuqiao Huang

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Yang Liu

    (Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Yue Jiang

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

Abstract

Aerated drip irrigation is rendered as a new water-saving irrigation method based on drip irrigation technology, which is endowed with the function of effectively alleviating the problem of rhizosphere hypoxia in crop soil, enhancing the utilization rate of water and fertilizer; as a result, it improves the harvest and quality of crops. However, clogged emitters are important indexes, among others, that pose an influence to the service effect and life duration of drip irrigation systems. At present, the working principle and mechanism of the influence of air feeding on the blockage of drip irrigation emitters remain unclear. Therefore, based on the two gas filling methods of the micro/nano bubble generator and Venturi injector, the dynamic change process for the average flow ratio of an air-filled drip irrigation emitter was studied by the method of emitter plugging test. 16S rRNA sequencing was used to analyze the microbial diversity of the emitter plugs. The results show that the air injection can pose influence on the clogging procedure of drip irrigation emitters, and more importantly, it makes the distribution of blocked emitters more uniform, thus improving the uniformity of the system. Different filling methods have different effects on the blockage of the emitter. Among them, the blockage time of drip irrigation system under the micro/nano aerated drip irrigation (MAI) mode is 5.73 times longer than that under unaerated drip irrigation (UVI), and similarly, Venturi gas drip irrigation (VAI) is close to that under UVI. The filling method changed the microbial diversity of the blockage in the emitter. Among them, the number of operational taxonomic unit (OTU) unique to MAI was 2.1 times that of UVI, and the number of OTU unique to VAI was 1.3 times that of UVI. Meanwhile, gas addition will inhibit the growth of Nitrospirae and Proteobacteria microbial communities and promote the growth of Firmicutes and Actinobacteria microbial communities. Furthermore, the increase in microbial extracellular polymer in the plugging material of the emitter was inhibited and the plugging process of the emitter was slowed down. The research results are of great significance in the disclosure of the clogging mechanism of drip irrigation emitter and constructing the green, anti-blockage technology of aerated drip irrigation.

Suggested Citation

  • Peng Li & Hao Li & Jinshan Li & Xiuqiao Huang & Yang Liu & Yue Jiang, 2022. "Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter," Agriculture, MDPI, vol. 12(11), pages 1-22, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1941-:d:976331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bo & Li, Yunkai & Xue, Song & Feng, Ji, 2019. "Variation of microorganisms in drip irrigation systems using high-sand surface water," Agricultural Water Management, Elsevier, vol. 218(C), pages 37-47.
    2. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Ben-Noah, I. & Friedman, S.P., 2016. "Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments," Agricultural Water Management, Elsevier, vol. 176(C), pages 222-233.
    4. Liu, Zeyuan & Xiao, Yang & Li, Yunkai & Zhou, Bo & Feng, Ji & Han, Siqi & Muhammad, Tahir, 2019. "Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water," Agricultural Water Management, Elsevier, vol. 213(C), pages 174-184.
    5. Bucks, D. A. & Nakayama, F. S. & Gilbert, R. G., 1979. "Trickle irrigation water quality and preventive maintenance," Agricultural Water Management, Elsevier, vol. 2(2), pages 149-162, June.
    6. Pendergast, L. & Bhattarai, S.P. & Midmore, D.J., 2019. "Evaluation of aerated subsurface drip irrigation on yield, dry weight partitioning and water use efficiency of a broad-acre chickpea (Cicer arietinum, L.) in a vertosol," Agricultural Water Management, Elsevier, vol. 217(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Li & Qibiao Han & Conghui Dong & Xi Nan & Hao Li & Hao Sun & Hui Li & Peng Li & Yawei Hu, 2023. "Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater," Agriculture, MDPI, vol. 13(11), pages 1-17, October.
    2. Liu, Zeyuan & Muhammad, Tahir & Puig-Bargués, Jaume & Han, Siqi & Ma, Yongjiu & Li, Yunkai, 2021. "Horizontal roughing filter for reducing emitter composite clogging in drip irrigation systems using high sediment water," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Yuan Li & Zhenxing Zhang & Jingwei Wang & Mingzhi Zhang, 2022. "Soil Aeration and Plastic Film Mulching Increase the Yield Potential and Quality of Tomato ( Solanum lycopersicum )," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    4. Ji Feng & Weinan Wang & Haisheng Liu, 2020. "Study on Fluid Movement Characteristics inside the Emitter Flow Path of Drip Irrigation System Using the Yellow River Water," Sustainability, MDPI, vol. 12(4), pages 1-12, February.
    5. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Seyedzadeh, Amin & Maroufpoor, Saman & Maroufpoor, Eisa & Shiri, Jalal & Bozorg-Haddad, Omid & Gavazi, Farnoosh, 2020. "Artificial intelligence approach to estimate discharge of drip tape irrigation based on temperature and pressure," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Zhenzhen Yu & Chun Wang & Huafen Zou & Hongxuan Wang & Hailiang Li & Haitian Sun & Deshui Yu, 2022. "The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    8. Honghui SANG & Xiyun JIAO & Shufang WANG & Weihua GUO & Mohamed Khaled SALAHOU & Kaihua LIU, 2018. "Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(7), pages 297-302.
    9. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Puig-Bargués, J. & Arbat, G. & Elbana, M. & Duran-Ros, M. & Barragán, J. & de Cartagena, F. Ramírez & Lamm, F.R., 2010. "Effect of flushing frequency on emitter clogging in microirrigation with effluents," Agricultural Water Management, Elsevier, vol. 97(6), pages 883-891, June.
    11. Han, Siqi & Li, Yunkai & Zhou, Bo & Liu, Zeyuan & Feng, Ji & Xiao, Yang, 2019. "An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water," Agricultural Water Management, Elsevier, vol. 212(C), pages 136-154.
    12. Zhou, Bo & Li, Yunkai & Xue, Song & Feng, Ji, 2019. "Variation of microorganisms in drip irrigation systems using high-sand surface water," Agricultural Water Management, Elsevier, vol. 218(C), pages 37-47.
    13. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Liu, Haijun & Huang, Guanhua, 2009. "Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent," Agricultural Water Management, Elsevier, vol. 96(5), pages 745-756, May.
    15. Puig-Bargues, J. & Arbat, G. & Barragan, J. & Ramirez de Cartagena, F., 2005. "Hydraulic performance of drip irrigation subunits using WWTP effluents," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 249-262, August.
    16. Oliver, M.M.H. & Hewa, G.A. & Pezzaniti, D., 2014. "Bio-fouling of subsurface type drip emitters applying reclaimed water under medium soil thermal variation," Agricultural Water Management, Elsevier, vol. 133(C), pages 12-23.
    17. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    18. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Li, Yunkai & Pan, Jiachong & Chen, Xiuzhi & Xue, Song & Feng, Ji & Muhammad, Tahir & Zhou, Bo, 2019. "Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads," Agricultural Water Management, Elsevier, vol. 213(C), pages 833-842.
    20. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1941-:d:976331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.