IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i9p893-d637222.html
   My bibliography  Save this article

Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review

Author

Listed:
  • Diana Larisa Roman

    (Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
    Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
    These authors contributed equally.)

  • Denisa Ioana Voiculescu

    (Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
    Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
    These authors contributed equally.)

  • Madalina Filip

    (Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
    Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania)

  • Vasile Ostafe

    (Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
    Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania)

  • Adriana Isvoran

    (Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
    Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania)

Abstract

Triazole fungicides can manifest toxicity to a wide range of non-target organisms. Within this study we present a systematic review of the effects produced on the soil microbiota and activity of soil enzymes by the following triazole fungicides: cyproconazole, difenoconazole, epoxiconazole, flutriafol, hexaconazole, metconazole, myclobutanil, paclobutrazole, propiconazole, tebuconazole, tetraconazole, triadimenol, triadimefon, and triticonazole. Known effects of the triazole fungicides on the soil activity are dose dependent. High doses of triazole fungicides strongly affects the structure of the microbial communities in soil and usually decrease the soil microbial population and the activities of enzymes found in soil.

Suggested Citation

  • Diana Larisa Roman & Denisa Ioana Voiculescu & Madalina Filip & Vasile Ostafe & Adriana Isvoran, 2021. "Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review," Agriculture, MDPI, vol. 11(9), pages 1-18, September.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:9:p:893-:d:637222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/9/893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/9/893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qing Zhao & Jie Tang & Zhaoyang Li & Wei Yang & Yucong Duan, 2018. "The Influence of Soil Physico-Chemical Properties and Enzyme Activities on Soil Quality of Saline-Alkali Agroecosystems in Western Jilin Province, China," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    2. Sang-Hwan Lee & Min-Suk Kim & Jeong-Gyu Kim & Soon-Oh Kim, 2020. "Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    3. Monther M. Tahat & Kholoud M. Alananbeh & Yahia A. Othman & Daniel I. Leskovar, 2020. "Soil Health and Sustainable Agriculture," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    4. Dilek Akyil & Arzu Ozkara & Muhsin Konuk, 2016. "Pesticides, Environmental Pollution, and Health," Chapters, in: Marcelo L. Larramendy & Sonia Soloneski (ed.), Environmental Health Risk - Hazardous Factors to Living Species, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Larisa Roman & Mariana Adina Matica & Alecu Ciorsac & Bianca Vanesa Boros & Adriana Isvoran, 2023. "The Effects of the Fungicide Myclobutanil on Soil Enzyme Activity," Agriculture, MDPI, vol. 13(10), pages 1-19, October.
    2. Marioara Nicoleta Caraba & Diana Larisa Roman & Ion Valeriu Caraba & Adriana Isvoran, 2023. "Assessment of the Effects of the Herbicide Aclonifen and Its Soil Metabolites on Soil and Aquatic Environments," Agriculture, MDPI, vol. 13(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nontobeko Gloria Maphuhla & Francis Bayo Lewu & Opeoluwa Oyehan Oyedeji, 2022. "Enzyme Activities in Reduction of Heavy Metal Pollution from Alice Landfill Site in Eastern Cape, South Africa," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    2. Yuchong Long & Zhengwei Cao & Yan Mao & Xinran Liu & Yan Gao & Chuanzhi Zhou & Xin Zheng, 2023. "Research on Evaluation Elements of Urban Agricultural Green Bases: A Causal Inference-Based Approach," Land, MDPI, vol. 12(8), pages 1-27, August.
    3. Yaqi Wang & Ming Gao & Heting Chen & Yiwen Chen & Lei Wang & Rui Wang, 2023. "Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    4. Yunke Qu & Jie Tang & Zhaoyang Li & Zihao Zhou & Jingjing Wang & Sining Wang & Yidan Cao, 2020. "Soil Enzyme Activity and Microbial Metabolic Function Diversity in Soda Saline–Alkali Rice Paddy Fields of Northeast China," Sustainability, MDPI, vol. 12(23), pages 1-15, December.
    5. Jian Wang & Chenxi Yang & Haiou Zhang & Juan Li, 2023. "Improving Soil Properties by Sand Application in the Saline-Alkali Area of the Middle and Lower Reaches of the Yellow River, China," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    6. Nontobeko Gloria Maphuhla & Francis Bayo Lewu & Opeoluwa Oyehan Oyedeji, 2020. "The Effects of Physicochemical Parameters on Analysed Soil Enzyme Activity from Alice Landfill Site," IJERPH, MDPI, vol. 18(1), pages 1-15, December.
    7. Sining Wang & Jie Tang & Zhaoyang Li & Yuqing Liu & Zihao Zhou & Jingjing Wang & Yunke Qu & Zhenxue Dai, 2020. "Carbon Mineralization under Different Saline—Alkali Stress Conditions in Paddy Fields of Northeast China," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    8. Jolanta Joniec & Edyta Kwiatkowska & Cezary A. Kwiatkowski, 2022. "Assessment of the Effects of Soil Fertilization with Spent Mushroom Substrate in the Context of Microbial Nitrogen Transformations and the Potential Risk of Exacerbating the Greenhouse Effect," Agriculture, MDPI, vol. 12(8), pages 1-19, August.
    9. Małgorzata Kobylińska, 2021. "Spatial Diversity of Organic Farming in Poland," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    10. Kevin Muyang Tawie Sulok & Osumanu Haruna Ahmed & Choy Yuen Khew & Jarroop Augustine Mercer Zehnder & Mohamadu Boyie Jalloh & Adiza Alhassan Musah & Arifin Abdu, 2021. "Chemical and Biological Characteristics of Organic Amendments Produced from Selected Agro-Wastes with Potential for Sustaining Soil Health: A Laboratory Assessment," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    11. Stephanie M. Klaedtke & Frédéric Rey & Steven P. C. Groot, 2022. "Designing a Seed Health Strategy for Organic Cropping Systems, Based on a Dynamic Perspective on Seed and Plant Health," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    12. María Álvarez-Gil & Mario Blanco-Vieites & David Suárez-Montes & Víctor Casado-Bañares & Jesús Fidel Delgado-Ramallo & Eduardo Rodríguez, 2023. "Revolutionizing Agriculture: Leveraging Hydroponic Greenhouse Wastewater for Sustainable Microalgae-Based Biostimulant Production," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    13. Yahia A. Othman & Monther Tahat & Kholoud M. Alananbeh & Malik Al-Ajlouni, 2022. "Arbuscular Mycorrhizal Fungi Inoculation Improves Flower Yield and Postharvest Quality Component of Gerbera Grown under Different Salinity Levels," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
    14. Gökçen Yakupoğlu & Kadir Saltalı & Jesus Rodrigo-Comino & Tuğrul Yakupoğlu & Artemi Cerda, 2022. "Manure Effect on Soil–Plant Interactions in Capia Pepper Crops under Semiarid Climate Conditions," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    15. Niclene Ponce Rodrigues de Oliveira & Edna Maria Bonfim-Silva & Tonny José Araújo da Silva & Patrícia Ferreira da Silva & Rosana Andréia da Silva Rocha & Luana Aparecida Menegaz Meneghetti & Alisson S, 2023. "Effects of Fertilization Types and Base Saturation on the Growth and Water Productivity in Panicum maximum cv. BRS Zuri," Agriculture, MDPI, vol. 13(10), pages 1-18, September.
    16. Xigui Li & Qing Wu & Yujie Liu, 2023. "Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    17. Jorge Freitas & Pedro Silva, 2022. "Sustainable Agricultural Systems for Fruit Orchards: The Influence of Plant Growth Promoting Bacteria on the Soil Biodiversity and Nutrient Management," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    18. Fuer Ning & Sheng-Jung Ou, 2021. "Analyzing Residents’ Landscape Preferences after Changes of Landscape Characteristics: A Qualitative Perspective," Land, MDPI, vol. 10(11), pages 1-24, October.
    19. Fatemeh Sadat Hosseini & Myoung Bae Seo & Seyed Vahid Razavi-Termeh & Abolghasem Sadeghi-Niaraki & Mohammad Jamshidi & Soo-Mi Choi, 2023. "Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting," Sustainability, MDPI, vol. 15(19), pages 1-25, September.
    20. Magdalena Myszura-Dymek & Grażyna Żukowska, 2023. "The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:9:p:893-:d:637222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.