IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i2p178-d503584.html
   My bibliography  Save this article

Evaluation of the Effects of Spray Technology and Volume Rate on the Control of Grape Berry Moth in Mountain Viticulture

Author

Listed:
  • Costas Michael

    (Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036 Limassol, Cyprus)

  • Emilio Gil

    (Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Esteve Terradas 8, Campus del Baix Llobregat 08860 Castelldefels, 08034 Barcelona, Spain)

  • Montserrat Gallart

    (Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, Esteve Terradas 8, Campus del Baix Llobregat 08860 Castelldefels, 08034 Barcelona, Spain)

  • Menelaos C. Stavrinides

    (Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036 Limassol, Cyprus)

Abstract

The current work evaluated spray coverage and pest control effectiveness against the grape berry moth ( Lobesia botrana ) by two different spray technologies and volume rates: A spray gun (high-volume sprayer—HVS) calibrated at 1000 L ha −1 and a conventional orchard sprayer calibrated at 500 L ha −1 (OS500) or 250 L ha −1 (OS250). Experiments were carried out in three different grape varieties over two years in mountain vineyards on the Mediterranean island of Cyprus. The median coverage for HVS remained above 80% for all three varieties, while that for OS500 ranged from 26% to 56%, and that for OS250 from 18% to 37%. Infestation by the grape berry moth varied from about 2.5% for Palomino, to 8% for Carignan and 3.2% for Xynisteri. Infestation in sprayed plots remained below 1.8% for all treatments, varieties and study years. Although infestation levels in OS250 were not different than the control in two varieties, the infestation levels among sprayer treatments did not differ by more than one percentage point. The current work suggests that lowering application volume and pesticide amount to 50% or more, in some cases, provides adequate control and represents an effective option for reducing pesticide use in vineyards.

Suggested Citation

  • Costas Michael & Emilio Gil & Montserrat Gallart & Menelaos C. Stavrinides, 2021. "Evaluation of the Effects of Spray Technology and Volume Rate on the Control of Grape Berry Moth in Mountain Viticulture," Agriculture, MDPI, vol. 11(2), pages 1-15, February.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:2:p:178-:d:503584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/2/178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/2/178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    2. Costas Michael & Emilio Gil & Montserrat Gallart & Menelaos C. Stavrinides, 2020. "Influence of Spray Technology and Application Rate on Leaf Deposit and Ground Losses in Mountain Viticulture," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanjie Dou & Changyuan Zhai & Liping Chen & Xiu Wang & Wei Zou, 2021. "Comparison of Orchard Target-Oriented Spraying Systems Using Photoelectric or Ultrasonic Sensors," Agriculture, MDPI, vol. 11(8), pages 1-18, August.
    2. Gaetano Imperatore & Aurora Ghirardelli & Luca Strinna & Cristiano Baldoin & Alberto Pozzebon & Giuseppe Zanin & Stefan Otto, 2021. "Evaluation of a Fixed Spraying System for Phytosanitary Treatments in Heroic Viticulture in North-Eastern Italy," Agriculture, MDPI, vol. 11(9), pages 1-14, August.
    3. Xinjian Wang & Junping Liu & Qing Zhang, 2022. "Water–Pesticide Integrated Micro-Sprinkler Design and Influence of Key Structural Parameters on Performance," Agriculture, MDPI, vol. 12(10), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    2. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    3. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    4. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    6. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    7. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    9. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    10. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    11. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    13. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    15. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Alexandra M. Cheney & Stephanann M. Costello & Nicholas V. Pinkham & Annie Waldum & Susan C. Broadaway & Maria Cotrina-Vidal & Marc Mergy & Brian Tripet & Douglas J. Kominsky & Heather M. Grifka-Walk , 2023. "Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    19. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    20. Myrto Pantazi & Olivier Klein & Mikhail Kissine, 2020. "Is justice blind or myopic? An examination of the effects of meta-cognitive myopia and truth bias on mock jurors and judges," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(2), pages 214-229, March.
    21. Loreto A Correa & Cecilia León & Juan Ramírez-Estrada & Álvaro Ly-Prieto & Sebastián Abades & Loren D Hayes & Mauricio Soto-Gamboa & Luis A Ebensperger, 2021. "One for all and all for one: phenotype assortment and reproductive success in masculinized females," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1266-1275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:2:p:178-:d:503584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.