IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i9p395-d409885.html
   My bibliography  Save this article

The Impact of Exotic Tamarix Species on Riparian Plant Biodiversity

Author

Listed:
  • Kgalalelo Tshimologo Annie Setshedi

    (School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa)

  • Solomon Wakshom Newete

    (School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
    Agricultural Research Council-Soil, Climate and Water (ARC-SCW), Geo-Information Science Division, Private Bag X79, Arcadia, Pretoria 0001, South Africa)

Abstract

This study investigated the impact of exotic Tamarix species on vascular plant biodiversity in riparian ecosystems in the Western Cape Province, South Africa. Vegetation was sampled, using 5 m wide belt transects, along the Leeu, Swart, and Olifants riparian areas, which had varying invasion intensities. Each transect was split into three zones (Zone 1: 0–15 m; Zone 2: 15–35, and Zone 3: >35 m), which were identified at each site based on species composition across each riparian zone. Woody plant species were identified, counted, and their heights measured within the transects that were laid out from the waterpoint (Zone 1) outwards (Zone 2 and 3). Herbaceous aerial cover (HAC) was determined subjectively and objectified using the Walker aerial cover scale. Leeu River had the highest species richness (Dmg = 2.79), diversity (H′ = 2.17; −lnλ = 1.91; N1 = 8.76 and α = 4.13), and evenness (J′= 0.80). The Swart River had the lowest species richness, which declined from Dmg = 1.96 (Zone 1) to Dmg = 1.82 (Zone 3). Exotic Tamarix species ranked in the top three most abundant woody vascular plant species along the Swart and Olifants rivers, where they ranked first and third, respectively. The Jaccard’s and Sorenson’s coefficients of similarity indicated that species differed greatly between the different sites, x ¯ < 27% for both indices. The indices also indicated that the Swart River had the lowest level of species distinctness between zones ( x ¯ > 80%) while the Leeu River had the highest level of species distinctness ( x ¯ < 50%) between the different zones. These findings suggest a possible displacement of herbaceous and woody tree species by exotic Tamarix invasion, inter alia, a decrease in ecosystem functions and services associated with the loss in biodiversity, as well as significant bearings on the agricultural ecosystem by reducing the faunal diversity such as crop pollinators, inter alia.

Suggested Citation

  • Kgalalelo Tshimologo Annie Setshedi & Solomon Wakshom Newete, 2020. "The Impact of Exotic Tamarix Species on Riparian Plant Biodiversity," Agriculture, MDPI, vol. 10(9), pages 1-16, September.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:395-:d:409885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/9/395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/9/395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B.W. van Wilgen & D.M. Richardson & D.C. Le Maitre & C. Marais & D. Magadlela, 2001. "The Economic Consequences of Alien Plant Invasions: Examples of Impacts and Approaches to Sustainable Management in South Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 3(2), pages 145-168, June.
    2. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Kocira & Mariola Staniak, 2021. "Weed Ecology and New Approaches for Management," Agriculture, MDPI, vol. 11(3), pages 1-6, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Jing Zhao & Xi Zheng & Xiaoyang Ou & Yaru Zhang & Jiaying Li, 2023. "Evaluation of Biodiversity Maintenance Capacity in Forest Landscapes: A Case Study in Beijing, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    2. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    3. Bardsley, Douglas K. & Bardsley, Annette M., 2014. "Organising for socio-ecological resilience: The roles of the mountain farmer cooperative Genossenschaft Gran Alpin in Graubünden, Switzerland," Ecological Economics, Elsevier, vol. 98(C), pages 11-21.
    4. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    5. Turpie, J.K. & Marais, C. & Blignaut, J.N., 2008. "The working for water programme: Evolution of a payments for ecosystem services mechanism that addresses both poverty and ecosystem service delivery in South Africa," Ecological Economics, Elsevier, vol. 65(4), pages 788-798, May.
    6. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    7. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    8. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    9. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    10. Sueur, Cédric & Fourneret, Eric & Espinosa, Romain, 2023. "Animal capital: a new way to define human-animal bond in view of global changes," OSF Preprints svg7x, Center for Open Science.
    11. Bogoni, Juliano André & Peres, Carlos A. & Ferraz, Katia M.P.M.B., 2020. "Effects of mammal defaunation on natural ecosystem services and human well being throughout the entire Neotropical realm," Ecosystem Services, Elsevier, vol. 45(C).
    12. Muhammad Mumtaz Khan & Muhammad Tahir Akram & Rhonda Janke & Rashad Waseem Khan Qadri & Abdullah Mohammed Al-Sadi & Aitazaz A. Farooque, 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    13. Daniels, Silvie & Bellmore, J. Ryan & Benjamin, Joseph R. & Witters, Nele & Vangronsveld, Jaco & Van Passel, Steven, 2018. "Quantification of the Indirect Use Value of Functional Group Diversity Based on the Ecological Role of Species in the Ecosystem," Ecological Economics, Elsevier, vol. 153(C), pages 181-194.
    14. Yiwei Lian & Yang Bai & Zhongde Huang & Maroof Ali & Jie Wang & Haoran Chen, 2024. "Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model," Land, MDPI, vol. 13(2), pages 1-19, February.
    15. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    16. Eva M. Murgado-Armenteros & María Gutierrez-Salcedo & Francisco José Torres-Ruiz, 2020. "The Concern about Biodiversity as a Criterion for the Classification of the Sustainable Consumer: A Cross-Cultural Approach," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    17. Gaeun Kim & Jiwon Kim & Youngjin Ko & Olebogeng Thelma G. Eyman & Sarwat Chowdhury & Julie Adiwal & Wookyun Lee & Yowhan Son, 2021. "How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    18. Chun-Huo Chiu & Anne Chao, 2014. "Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-17, July.
    19. Stafford, William & Birch, Catherine & Etter, Hannes & Blanchard, Ryan & Mudavanhu, Shepherd & Angelstam, Per & Blignaut, James & Ferreira, Louwrens & Marais, Christo, 2017. "The economics of landscape restoration: Benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia," Ecosystem Services, Elsevier, vol. 27(PB), pages 193-202.
    20. Körner, Katrin & Pfestorf, Hans & May, Felix & Jeltsch, Florian, 2014. "Modelling the effect of belowground herbivory on grassland diversity," Ecological Modelling, Elsevier, vol. 273(C), pages 79-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:395-:d:409885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.