IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i10p469-d426590.html
   My bibliography  Save this article

Assessing the Influence of Soil Quality on Rainfed Wheat Yield

Author

Listed:
  • Kamal Nabiollahi

    (Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran)

  • Eskandari Heshmat

    (Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran)

  • Amir Mosavi

    (Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
    Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    School of Economics and Business, Norwegian University of Life Sciences, 1430 As, Norway)

  • Ruth Kerry

    (Department of Geography, Brigham Young University, Provo, UT 84602, USA)

  • Mojtaba Zeraatpisheh

    (Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Ministry of Education, Kaifeng 475004, China
    College of Environment and Planning, Henan University, Ministry of Education, Kaifeng 475004, China)

  • Ruhollah Taghizadeh-Mehrjardi

    (Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany
    Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan 8951656767, Iran
    DFG Cluster of Excellence “Machine Learning”, University of Tübingen, 72070 Tübingen, Germany)

Abstract

Soil quality assessment based on crop yields and identification of key indicators of it can be used for better management of agricultural production. In the current research, the weighted additive soil quality index (SQIw), factor analysis (FA), and multiple linear regression (MLR) are used to assess the soil quality of rainfed winter wheat fields with two soil orders on 53.20 km 2 of agricultural land in western Iran. A total of 18 soil quality indicators were determined for 100 soil samples (0–20 cm depth) from two soil orders (Inceptisols and Entisols). The soil properties measured were: pH, soil texture, organic carbon (OC), cation exchange capacity (CEC), electrical conductivity (EC), soil microbial respiration (SMR), carbonate calcium equivalent (CCE), soil porosity (SP), bulk density (BD), exchangeable sodium percentage (ESP), mean weight diameter (MWD), available potassium (AK), total nitrogen (TN), available phosphorus (AP), available Fe (AFe), available Zn (AZn), available Mn (AMn), and available Cu (ACu). Wheat grain yield for all of the 100 sampling sites was also gathered. The SQIw was calculated using two weighting methods (FA and MLR) and maps were created using a digital soil mapping framework. The soil indicators determined for the minimum data set (MDS) were AK, clay, CEC, AP, SMR, and sand. The correlation between the MLR weighting technique (SQIw-M) and the rainfed wheat yield ( r = 0.62) was slightly larger than that the correlation of yield with the FA weighted technique (SQIw-F) ( r = 0.58). Results showed that the means of both SQIw-M and SQIw-F and rainfed wheat yield for Inceptisols were higher than for Entisols, although these differences were not statistically significant. Both SQIw-M and SQIw-F showed that areas with Entisols had lower proportions of good soil quality grades (Grades I and II), and higher proportions of poor soil quality grades (Grades IV and V) compared to Inceptisols. Based on these results, soil type must be considered for soil quality assessment in future studies to maintain and enhance soil quality and sustainable production. The overall soil quality of the study region was of poor and moderate grades. To improve soil quality, it is therefore recommended that effective practices such as the implementation of scientifically integrated nutrient management involving the combined use of organic and inorganic fertilizers in rainfed wheat fields should be promoted.

Suggested Citation

  • Kamal Nabiollahi & Eskandari Heshmat & Amir Mosavi & Ruth Kerry & Mojtaba Zeraatpisheh & Ruhollah Taghizadeh-Mehrjardi, 2020. "Assessing the Influence of Soil Quality on Rainfed Wheat Yield," Agriculture, MDPI, vol. 10(10), pages 1-18, October.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:469-:d:426590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/10/469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/10/469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulius Astrauskas & Gediminas Staugaitis, 2022. "Digital Technologies Determination Effectiveness for the Productivity of Organic Winter Wheat Production in Low Soil Performance Indicator," Agriculture, MDPI, vol. 12(4), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Franco Curadelli & Marcelo Alberto & Ernesto Martín Uliarte & Mariana Combina & Iván Funes-Pinter, 2023. "Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    4. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Mannan, M.A. & Mia, Shamim & Halder, Eshita & Dijkstra, Feike A., 2021. "Biochar application rate does not improve plant water availability in soybean under drought stress," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Junhong Xie & Linlin Wang & Lingling Li & Sumera Anwar & Zhuzhu Luo & Effah Zechariah & Setor Kwami Fudjoe, 2021. "Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    7. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Tohiran, Kamil Azmi & Nobilly, Frisco & Zulkifli, Raja & Yahya, Muhammad Syafiq & Norhisham, Ahmad Razi & Rasyidi, Md Zainal & Azhar, Badrul, 2023. "Multi-species rotational grazing of small ruminants regenerates undergrowth vegetation while controlling weeds in the oil palm silvopastoral system," Agricultural Systems, Elsevier, vol. 210(C).
    9. Junhong Xie & Linlin Wang & Lingling Li & Sumera Anwar & Zhuzhu Luo & Setor Kwami Fudjoe & Haofeng Meng, 2022. "Optimal Nitrogen Rate Increases Water and Nitrogen Use Efficiencies of Maize under Fully Mulched Ridge–Furrow System on the Loess Plateau," Agriculture, MDPI, vol. 12(11), pages 1-18, October.
    10. Delbaz, Reza & Ebrahimian, Hamed & Abbasi, Fariborz & Ghameshlou, Arezoo N. & Liaghat, Abdolmajid & Ranazadeh, Dariush, 2023. "A global meta-analysis on surface and drip fertigation for annual crops under different fertilization levels," Agricultural Water Management, Elsevier, vol. 289(C).
    11. Elnaz Amirahmadi & Jan Moudrý & Petr Konvalina & Stefan Josef Hörtenhuber & Mohammad Ghorbani & Reinhard W. Neugschwandtner & Zhixiang Jiang & Theresa Krexner & Marek Kopecký, 2022. "Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:469-:d:426590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.