IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1799-d957213.html
   My bibliography  Save this article

Optimal Nitrogen Rate Increases Water and Nitrogen Use Efficiencies of Maize under Fully Mulched Ridge–Furrow System on the Loess Plateau

Author

Listed:
  • Junhong Xie

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Linlin Wang

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Lingling Li

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Sumera Anwar

    (Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54660, Pakistan)

  • Zhuzhu Luo

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Resources and Environment Science, Gansu Agricultural University, Lanzhou 730070, China)

  • Setor Kwami Fudjoe

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Haofeng Meng

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

Abstract

Increasing water and nitrogen use efficiencies (i.e., WUE and NUE ) in dryland agroecosystems to maintain high agricultural output with lower environmental costs, such as minimal soil water depletion and nitrate-N residue, are key responsibilities to assure food security for a growing global population. The impact of N rate on soil water balance, soil nitrate N residue, grain yield, WUE , crop N recovery efficiency ( RE N ), agronomic use efficiency of N fertilizer ( AE ), and net economic return were examined on maize production on the rainfed Loess Plateau during 2011–2018. Field treatments included four N application rates (N0, no N fertilizer applied; N100, 100 kg N ha −1 ; N200, 200 kg N ha −1 ; N300, 300 kg N ha −1 ). Results showed that compared with N0, grain yield increased by 56, 110, and 115% under N100, N200, and N300, respectively, with corresponding improvements in net economic return of 5497, 10,878, and 11,088 RMB ha −1 yr − 1 , respectively; no significant difference was detected between N200 and N300. Compared to N0, N fertilization significantly increased WUE through improving photosynthetic WUE (i.e., transpiration efficiency), but there was no significant difference between N200 and N300. Compared to N100, the RE N was gradually decreased as N rates increased, AE was not significantly changed under N200 and significantly decreased under N300 due to a decreased leaf photosynthetic NUE . Compared to original soil water storage at 0–300 cm soil depths, after seven years of continuous experiments, treatment of N0 enhanced soil water storage by 52 mm and treatment of N100 had no effect on soil water storage, but treatments of N200 and N300 depleted soil water storage by 73 and 109 mm, respectively. Our findings showed that 200 kg N ha −1 improves WUE and NUE with less environmental cost and should be regarded as the economically optimal N rate on the semiarid western Loess Plateau of China for sustainable maize production.

Suggested Citation

  • Junhong Xie & Linlin Wang & Lingling Li & Sumera Anwar & Zhuzhu Luo & Setor Kwami Fudjoe & Haofeng Meng, 2022. "Optimal Nitrogen Rate Increases Water and Nitrogen Use Efficiencies of Maize under Fully Mulched Ridge–Furrow System on the Loess Plateau," Agriculture, MDPI, vol. 12(11), pages 1-18, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1799-:d:957213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Xiang, Youzheng & Yan, Shicheng & Wu, You, 2019. "Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 996-1003.
    2. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    3. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    5. Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Wang, Linlin & Palta, Jairo A. & Chen, Wei & Chen, Yinglong & Deng, Xiping, 2018. "Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling," Agricultural Water Management, Elsevier, vol. 197(C), pages 41-53.
    7. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatma-Zohra Bouras & Salah Hadjout & Benalia Haddad & Asma Malek & Sonia Aitmoumene & Feriel Gueboub & Luiza Metrah & Bahia Zemmouri & Omar Kherif & Nazih-Yacer Rebouh & Mourad Latati, 2023. "The Effect of Nitrogen Supply on Water and Nitrogen Use Efficiency by Wheat–Chickpea Intercropping System under Rain-Fed Mediterranean Conditions," Agriculture, MDPI, vol. 13(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Junhong Xie & Linlin Wang & Lingling Li & Sumera Anwar & Zhuzhu Luo & Effah Zechariah & Setor Kwami Fudjoe, 2021. "Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    3. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    4. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    5. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    6. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    8. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    9. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    10. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    12. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Munyasya, Alex Ndolo & Koskei, Kiprotich & Zhou, Rui & Liu, Shu-Tong & Indoshi, Sylvia Ngaira & Wang, Wei & Zhang, Xu-Cheng & Cheruiyot, Wesly Kiprotich & Mburu, David Mwehia & Nyende, Aggrey Bernard , 2022. "Integrated on-site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Linlin Wang & Zhuzhu Luo & Lingling Li & Junhong Xie & Setor Kwami Fudjoe & Effah Zechariah, 2022. "Land Use Affects Soil Water Balance and Soil Desiccation within the Soil Profile: Evidence from the Western Loess Plateau Case," Land, MDPI, vol. 11(8), pages 1-15, July.
    15. Kashif AKHTAR & Weiyu WANG & Ahmad KHAN & Guangxin REN & Muhammad Zahir AFRIDI & Yongzhong FENG & Gaihe YANG, 2018. "Wheat straw mulching with fertilizer nitrogen: An approach for improving soil water storage and maize crop productivity," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(7), pages 330-337.
    16. Abdul Ghaffar Khan & Muhammad Imran & Anwar-ul-Hassan Khan & Ali Fares & Jiří Šimůnek & Tanveer Ul-Haq & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali, 2021. "Performance of Spring and Summer-Sown Maize under Different Irrigation Strategies in Pakistan," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    17. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    18. Shrestha, N.K. & Shukla, S., 2014. "Basal crop coefficients for vine and erect crops with plastic mulch in a sub-tropical region," Agricultural Water Management, Elsevier, vol. 143(C), pages 29-37.
    19. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    20. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1799-:d:957213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.