IDEAS home Printed from https://ideas.repec.org/a/etr/series/v3y2012i2p079-089.html
   My bibliography  Save this article

Construction of the prediction model of business operation performance in the electronic industry

Author

Listed:
  • Shing-Chih Yang

    (Shipping and Transportation Management Department, National Taiwan Ocean University, Taiwan, R.O.C. No.2, 2 Pei-Ning Road,Keelung ,Taiwan 20224,R.O.C.)

  • Chan-Shal Lee

    (Shipping and Transportation Management Department, National Taiwan Ocean University, Taiwan, R.O.C. No.2, 2 Pei-Ning Road,Keelung ,Taiwan 20224,R.O.C.)

  • Hsuan-Shih Lee

    (Shipping and Transportation Management Department, National Taiwan Ocean University, Taiwan, R.O.C. No.2, 2 Pei-Ning Road,Keelung ,Taiwan 20224,R.O.C.)

Abstract

No more than three years after the occurrence of sub-prime crisis in USA, the global financial market is facing again the strict threat of the European Debt Crisis, and if it cannot be solved, its impact will be far beyond financial crisis. Fast change of economic cycle has led to financial difficulty and credit bankruptcy in lots of enterprises in Taiwan with bad business operation performance; hence, lots of enterprises have to implement no-pay day or even lay-off. In addition, the confidence of lots of stock investors is affected, and many of them hesitate to buy more stocks. First, this article collected two sets of financial report data from 350 electronic related companies with stocks listed in regular and OTC stock market in Taiwan in the second season of 2011 and third season of 2011, meanwhile, Grey Relational Analysis and Data Envelopment Analysis where used to investigate the business operation performance of each enterprise and to rank the result. Then, dichotomy method was used in this article to divide this ranking into two types of good and bad performance to be used as dependent variable (Y), meanwhile, the financial report data was collected and arranged to be used as independent variable (X), then models such as ZSCORE model (abbreviated as ZSCORE), the association of Support Vector Regression and ZSCORE model (abbreviated as SVR+ZSCORE), Artificial Fish Swarm Algorithm (AFSA) optimized Support Vector Regression parameter in association with ZSCORE model (abbreviated as AFSASVR+ZSCORE) and Fruit Fly Optimization Algorithm optimized Support Vector Regression parameter in association with ZSCORE model (abbreviated as FOASVR+ZSCORE), will be used respectively to set up enterprise’s operation performance detection model, meanwhile, the classification prediction capability of each model will be compared, and the result will be provided to the business operation and management personnel as reference.

Suggested Citation

  • Shing-Chih Yang & Chan-Shal Lee & Hsuan-Shih Lee, 2012. "Construction of the prediction model of business operation performance in the electronic industry," E3 Journal of Business Management and Economics., E3 Journals, vol. 3(2), pages 079-089.
  • Handle: RePEc:etr:series:v:3:y:2012:i:2:p:079-089
    as

    Download full text from publisher

    File URL: http://www.e3journals.org/cms/articles/1330783243_Shing-Chih%20et%20al.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
    3. Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
    4. Zhu (Drew) Zhang & Jie Yuan & Amulya Gupta, 2024. "Let the Laser Beam Connect the Dots: Forecasting and Narrating Stock Market Volatility," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1400-1416, December.
    5. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    6. Cenk Ufuk Yıldıran & Abdurrahman Fettahoğlu, 2017. "Forecasting USDTRY rate by ARIMA method," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1335968-133, January.
    7. Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
    8. Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
    9. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    10. Jeffrey Vitale & John Robinson, 2025. "In-Season Price Forecasting in Cotton Futures Markets Using ARIMA, Neural Network, and LSTM Machine Learning Models," JRFM, MDPI, vol. 18(2), pages 1-19, February.
    11. Salehi Mahdi & Rostami Neda, 2013. "Bankruptcy Prediction By Using Support Vector Machines And Genetic Algorithms," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 8(1), pages 104-114, April.
    12. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    13. Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.
    14. Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
    15. Filip Stefaniuk & Robert Ślepaczuk, 2024. "The article investigates the usage of Informer architecture for building automated trading strategies for high frequency Bitcoin data. Three strategies using Informer model with different loss functio," Working Papers 2024-27, Faculty of Economic Sciences, University of Warsaw.
    16. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    17. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    18. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    19. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    20. Chlebus Marcin & Dyczko Michał & Woźniak Michał, 2021. "Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem," Central European Economic Journal, Sciendo, vol. 8(55), pages 44-62, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:etr:series:v:3:y:2012:i:2:p:079-089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrew Godwin The email address of this maintainer does not seem to be valid anymore. Please ask Andrew Godwin to update the entry or send us the correct address (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.