IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v43y2007i5p578-590.html
   My bibliography  Save this article

Modal split and commuting pattern on a bottleneck-constrained highway

Author

Listed:
  • Huang, Hai-Jun
  • Tian, Qiong
  • Yang, Hai
  • Gao, Zi-You

Abstract

Every morning, commuters either use their private cars or select the regularly dispatched buses for traveling from a residential area to a workplace on a bottleneck-constrained highway. With the mode split governed by a logit-based formula, the classical bottleneck model and a newly proposed equilibrium bus run choice model are integrated to depict the bottleneck congestion jointly caused by private cars and buses. Numerical results show that the arrival rates of commuters at workplace are different from that at bottleneck. Sensitivity analyses are conducted by varying the combinations of bus fare and dispatch frequency, as well as other model parameters.

Suggested Citation

  • Huang, Hai-Jun & Tian, Qiong & Yang, Hai & Gao, Zi-You, 2007. "Modal split and commuting pattern on a bottleneck-constrained highway," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 578-590, September.
  • Handle: RePEc:eee:transe:v:43:y:2007:i:5:p:578-590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554506000305
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Li-Jun & Huang, Hai-Jun, 2015. "Modeling the modal split and trip scheduling with commuters’ uncertainty expectation," European Journal of Operational Research, Elsevier, vol. 244(3), pages 815-822.
    2. Basso, Leonardo J. & Feres, Fernando & Silva, Hugo E., 2019. "The efficiency of bus rapid transit (BRT) systems: A dynamic congestion approach," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 47-71.
    3. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    4. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    5. Guo, Ren-Yong & Szeto, W.Y. & Long, Jiancheng, 2020. "Trial-and-error operation schemes for bimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 106-123.
    6. Fu, Yulan & Wang, Chenlan & Liu, Tian-Liang & Huang, Hai-Jun, 2021. "Parking management in the morning commute problem with ridesharing," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Li, Zhi-Chun & Zhang, Liping, 2020. "The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 46-76.
    8. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    9. André De Palma & Robin Lindsey & Guillaume Monchambert, 2015. "The Economics of Crowding in Public Transport," Working Papers hal-01203310, HAL.
    10. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    11. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    12. Zhu, Zheng & Li, Xinwei & Liu, Wei & Yang, Hai, 2019. "Day-to-day evolution of departure time choice in stochastic capacity bottleneck models with bounded rationality and various information perceptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 168-192.
    13. Zhao, Hui & Yan, Xuedong & Gao, Ziyou, 2013. "Transportation serviceability analysis for metropolitan commuting corridors based on modal choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 270-284.
    14. Wang, Jing & Zhang, Xiaoning & Wang, Hua & Zhang, Michael, 2019. "Optimal parking supply in bi-modal transportation network considering transit scale economies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 207-229.
    15. Liu, Peng & Liu, Jielun & Ong, Ghim Ping & Tian, Qiong, 2020. "Flow pattern and optimal capacity in a bi-modal traffic corridor with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    16. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    17. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    18. Palma, Andre de & Lindsey, Robin & Monchambert, Guillaume, 2016. "Optimal Transit Pricing with Crowding and Traffic Congestion: A Dynamic Equilibrium Analysis," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319276, Transportation Research Forum.
    19. Dong, Tao & Jia, Ning & Ma, Shoufeng & Xu, Shu-Xian & Ping Ong, Ghim & Liu, Peng & Huang, Hai-Jun, 2022. "Impacts of intercity commuting on travel characteristics and urban performances in a two-city system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:43:y:2007:i:5:p:578-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.