IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v193y2025ics1366554524004137.html
   My bibliography  Save this article

Dynamic matching radius decision model for on-demand ride services: A deep multi-task learning approach

Author

Listed:
  • Chen, Taijie
  • Shen, Zijian
  • Feng, Siyuan
  • Yang, Linchuan
  • Ke, Jintao

Abstract

As ride-hailing services have experienced significant growth, most research has concentrated on the dispatching mode, where drivers must accept the platform’s assigned trip requests. However, the broadcasting mode, in which drivers can freely choose their preferred orders from those broadcast by the platform, has received less attention. One crucial but challenging task in such a system is the determination of the matching radius, which usually varies across space, time, and real-time supply/demand characteristics. This study develops a Deep Learning-based Matching Radius Decision (DL-MRD) model that predicts key system performance metrics for a range of matching radii, which enables the ride-hailing platform to select an optimal matching radius that maximizes overall system performance according to real-time supply and demand information. To simultaneously maximize multiple system performance metrics for matching radius determination, we devise a novel multi-task learning algorithm named Weighted Exponential Smoothing Multi-task (WESM) learning strategy that enhances convergence speed of each task (corresponding to the optimization of one metric) and delivers more accurate overall predictions. We evaluate our methods in a simulation environment designed for broadcasting-mode-based ride-hailing service. Our findings reveal that dynamically adjusting matching radii based on our proposed approach significantly improves system performance.

Suggested Citation

  • Chen, Taijie & Shen, Zijian & Feng, Siyuan & Yang, Linchuan & Ke, Jintao, 2025. "Dynamic matching radius decision model for on-demand ride services: A deep multi-task learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004137
    DOI: 10.1016/j.tre.2024.103822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    2. Rosemonde Ausseil & Jennifer A. Pazour & Marlin W. Ulmer, 2022. "Supplier Menus for Dynamic Matching in Peer-to-Peer Transportation Platforms," Transportation Science, INFORMS, vol. 56(5), pages 1304-1326, September.
    3. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    4. Sun, Luoyi & Teunter, Ruud H. & Hua, Guowei & Wu, Tian, 2020. "Taxi-hailing platforms: Inform or Assign drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 197-212.
    5. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    6. repec:osf:socarx:q86sd_v1 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tubagus Robbi Megantara & Sudradjat Supian & Diah Chaerani, 2022. "Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    2. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    3. Sen Li & Kameshwar Poolla & Pravin Varaiya, 2020. "Impact of Congestion Charge and Minimum Wage on TNCs: A Case Study for San Francisco," Papers 2003.02550, arXiv.org, revised Feb 2021.
    4. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    5. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    6. Zhang, Zhuoye & Zhang, Fangni, 2024. "Optimal operation strategies of an urban crowdshipping platform in asset-light, asset-medium, or asset-heavy business format," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    7. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
    8. Xu, Zhengtian & Yin, Yafeng & Chao, Xiuli & Zhu, Hongtu & Ye, Jieping, 2021. "A generalized fluid model of ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 587-605.
    9. Sun, Luoyi & Teunter, Ruud H. & Hua, Guowei & Wu, Tian, 2020. "Taxi-hailing platforms: Inform or Assign drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 197-212.
    10. Ye, Anke & Zhang, Kenan & Chen, Xiqun (Michael) & Bell, Michael G.H. & Lee, Der-Horng & Hu, Simon, 2024. "Modeling and managing an on-demand meal delivery system with order bundling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    11. Ke, Jintao & Li, Xinwei & Yang, Hai & Yin, Yafeng, 2021. "Pareto-efficient solutions and regulations of congested ride-sourcing markets with heterogeneous demand and supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Gao, Chang & Lin, Xi & He, Fang & Tang, Xindi, 2024. "Online relocating and matching of ride-hailing services: A model-based modular approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    13. Sun, Luoyi & Hua, Guowei & Cheng, T.C.E. & Teunter, Ruud H. & Dong, Jingxin & Wang, Yixiao, 2023. "Purchase or rent? Optimal pricing for 3D printing capacity sharing platforms," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1192-1205.
    14. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    15. Si, Jinhua & He, Fang & Lin, Xi & Tang, Xindi, 2024. "Vehicle dispatching and routing of on-demand intercity ride-pooling services: A multi-agent hierarchical reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    16. Zhou, Yaqian & Yang, Hai & Ke, Jintao & Wang, Hai & Li, Xinwei, 2022. "Competition and third-party platform-integration in ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 76-103.
    17. Mo, Dong & Wang, Hai & Cai, Zeen & Szeto, W.Y. & Chen, Xiqun (Michael), 2024. "Modeling and regulating a ride-sourcing market integrated with vehicle rental services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    18. Yang, Yue & Umboh, Seeun William & Ramezani, Mohsen, 2024. "Freelance drivers with a decline choice: Dispatch menus in on-demand mobility services for assortment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    19. Roger B. Chen & Christopher Valant, 2023. "Stability and Convergence in Matching Processes for Shared Mobility Systems," Networks and Spatial Economics, Springer, vol. 23(2), pages 469-486, June.
    20. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.