IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v75y2015icp74-88.html
   My bibliography  Save this article

Optimal layout of transshipment facility locations on an infinite homogeneous plane

Author

Listed:
  • Xie, Weijun
  • Ouyang, Yanfeng

Abstract

This paper studies optimal spatial layout of transshipment facilities and the corresponding service regions on an infinite homogeneous plane R2 that minimize the total cost for facility set-up, outbound delivery and inbound replenishment transportation. The problem has strong implications in the context of freight logistics and transit system design. This paper first focuses on a Euclidean plane and shows that a tight upper bound can be achieved by a type of elongated cyclic hexagons, while a cost lower bound based on relaxation and idealization is also obtained. The gap between the analytical upper and lower bounds is within 0.3%. This paper then shows that a similar elongated non-cyclic hexagon shape, with proper orientation, is actually optimal for service regions on a rectilinear metric plane. Numerical experiments are conducted to verify the analytical findings and to draw further insights.

Suggested Citation

  • Xie, Weijun & Ouyang, Yanfeng, 2015. "Optimal layout of transshipment facility locations on an infinite homogeneous plane," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 74-88.
  • Handle: RePEc:eee:transb:v:75:y:2015:i:c:p:74-88
    DOI: 10.1016/j.trb.2015.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515000211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perl, Jossef & Daskin, Mark S., 1985. "A warehouse location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 19(5), pages 381-396, October.
    2. Arthur F. Veinott, Jr., 1964. "Production Planning with Convex Costs: A Parametric Study," Management Science, INFORMS, vol. 10(3), pages 441-460, April.
    3. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    4. Gérard P. Cachon, 2014. "Retail Store Density and the Cost of Greenhouse Gas Emissions," Management Science, INFORMS, vol. 60(8), pages 1907-1925, August.
    5. Daganzo, Carlos F., 1984. "The length of tours in zones of different shapes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 135-145, April.
    6. John Gunnar Carlsson & Fan Jia, 2013. "Euclidean Hub-and-Spoke Networks," Operations Research, INFORMS, vol. 61(6), pages 1360-1382, December.
    7. Yanfeng Ouyang & Carlos F. Daganzo, 2006. "Discretization and Validation of the Continuum Approximation Scheme for Terminal System Design," Transportation Science, INFORMS, vol. 40(1), pages 89-98, February.
    8. Mark Daskin & Collette Coullard & Zuo-Jun Shen, 2002. "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results," Annals of Operations Research, Springer, vol. 110(1), pages 83-106, February.
    9. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    10. Qi, Lian & Shen, Zuo-Jun Max, 2010. "Worst-case analysis of demand point aggregation for the Euclidean p-median problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 434-443, April.
    11. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    12. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    13. Max Shen, Zuo-Jun & Qi, Lian, 2007. "Incorporating inventory and routing costs in strategic location models," European Journal of Operational Research, Elsevier, vol. 179(2), pages 372-389, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daisuke Watanabe & Takeshi Kenmochi & Keiju Sasa, 2021. "An Analytical Approach for Facility Location for Truck Platooning—A Case Study of an Unmanned Following Truck Platooning System in Japan," Logistics, MDPI, vol. 5(2), pages 1-15, May.
    2. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    3. Liu, Yining & Ouyang, Yanfeng, 2023. "Planning ride-pooling services with detour restrictions for spatially heterogeneous demand: A multi-zone queuing network approach," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Xin Wang & Michael K. Lim & Yanfeng Ouyang, 2017. "A Continuum Approximation Approach to the Dynamic Facility Location Problem in a Growing Market," Transportation Science, INFORMS, vol. 51(1), pages 343-357, February.
    5. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    6. Fontaine, Pirmin & Minner, Stefan & Schiffer, Maximilian, 2023. "Smart and sustainable city logistics: Design, consolidation, and regulation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1071-1084.
    7. Arevalo-Ascanio, Rafael & De Meyer, Annelies & Gevaers, Roel & Guisson, Ruben & Dewulf, Wouter, 2024. "From operational to strategic modelling: A continuous multi-scale approach for last-mile analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    8. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    9. Xin Li & Wanying Liu & Jingyuan Qiao & Yanhao Li & Jia Hu, 2023. "An Enhanced Semi-Flexible Transit Service with Introducing Meeting Points," Networks and Spatial Economics, Springer, vol. 23(3), pages 487-527, September.
    10. Chen, Wanying (Amanda) & De Koster, René & Gong, Yeming, 2023. "Warehouses without aisles: Layout design of a multi-deep rack climbing robotic system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    11. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    12. Ouyang, Yanfeng & Wang, Zhaodong & Yang, Hai, 2015. "Facility location design under continuous traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 18-33.
    13. Lei, Chao & Jiang, Zhoutong & Ouyang, Yanfeng, 2020. "Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 60-75.
    14. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    15. Karen Smilowitz, 2017. "Comments on: Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 440-442, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    2. Cui, Jianxun & Zhao, Meng & Li, Xiaopeng & Parsafard, Mohsen & An, Shi, 2016. "Reliable design of an integrated supply chain with expedited shipments under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 143-163.
    3. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    4. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    5. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    6. Wang, Xin & Lim, Michael K. & Ouyang, Yanfeng, 2015. "Infrastructure deployment under uncertainties and competition: The biofuel industry case," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 1-15.
    7. Li, Xiaopeng, 2013. "An integrated modeling framework for design of logistics networks with expedited shipment services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 46-63.
    8. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    9. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    10. Ouyang, Yanfeng & Wang, Zhaodong & Yang, Hai, 2015. "Facility location design under continuous traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 18-33.
    11. Xin Wang & Michael K. Lim & Yanfeng Ouyang, 2017. "A Continuum Approximation Approach to the Dynamic Facility Location Problem in a Growing Market," Transportation Science, INFORMS, vol. 51(1), pages 343-357, February.
    12. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    13. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    14. Fan, Hongqiang & Yun, Lifen & Li, Xiaopeng, 2022. "A linear-time crystal-growth algorithm for discretization of continuum approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    15. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    16. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    17. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    18. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.
    19. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    20. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:75:y:2015:i:c:p:74-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.