IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Non-unique flows in macroscopic first-order intersection models

Listed author(s):
  • Corthout, Ruben
  • Flötteröd, Gunnar
  • Viti, Francesco
  • Tampère, Chris M.J.
Registered author(s):

    Currently, most intersection models embedded in macroscopic Dynamic Network Loading (DNL) models are not well suited for urban and regional applications. This is so because so-called internal supply constraints, bounding flows due to crossing and merging conflicts inherent to the intersection itself, are missing. This paper discusses the problems that arise upon introducing such constraints. A general framework for the distribution of (internal) supply is adopted, which is based on the definition of priority parameters that describe the strength of each flow in the competition for a particular supply. Using this representation, it is shown that intersection models – with realistic behavioral assumptions, and in simple configurations – can produce non-unique flow patterns under identical boundary conditions. This solution non-uniqueness is thoroughly discussed and approaches on how it can be dealt with are provided. Also, it is revealed that the undesirable model properties are not solved – but rather enhanced – when diverting from a point-like to a spatial modeling approach.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 46 (2012)
    Issue (Month): 3 ()
    Pages: 343-359

    in new window

    Handle: RePEc:eee:transb:v:46:y:2012:i:3:p:343-359
    DOI: 10.1016/j.trb.2011.10.011
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Troutbeck, Rod J. & Kako, Soichiro, 1999. "Limited priority merge at unsignalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(3-4), pages 291-304, April.
    2. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    3. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    4. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    5. Carey, Malachy, 1992. "Nonconvexity of the dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 127-133, April.
    6. Chevallier, Estelle & Leclercq, Ludovic, 2007. "A macroscopic theory for unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1139-1150, December.
    7. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: Solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 934-950, December.
    8. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.
    9. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:3:p:343-359. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.