IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i2p392-408.html
   My bibliography  Save this article

Frequency-based transit assignment considering seat capacities

Author

Listed:
  • Schmöcker, Jan-Dirk
  • Fonzone, Achille
  • Shimamoto, Hiroshi
  • Kurauchi, Fumitaka
  • Bell, Michael G.H.

Abstract

This paper proposes a frequency-based assignment model that considers travellers probability of finding a seat in their perception of route cost and hence also their route choice. The model introduces a "fail-to-sit" probability at boarding points with travel costs based on the likelihood of travelling seated or standing. Priority rules are considered; in particular it is assumed that standing on-board passengers will occupy any available seats of alighting passengers before newly boarding passengers can fill any remaining seats. At the boarding point passengers are assumed to mingle, meaning that FIFO is not observed, as is the case for many crowded bus and metro stops, particularly in European countries. The route choice considers the common lines problem and an user equilibrium solution is sought through a Markov type network loading process and the method of successive averages. The model is first illustrated with a small example network before being applied to the inner zone of London's underground network. The effect of different values passengers might attach to finding a seat are illustrated. Applications of the model for transit planning as well as for information provision at the journey planner stage are discussed.

Suggested Citation

  • Schmöcker, Jan-Dirk & Fonzone, Achille & Shimamoto, Hiroshi & Kurauchi, Fumitaka & Bell, Michael G.H., 2011. "Frequency-based transit assignment considering seat capacities," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 392-408, February.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:2:p:392-408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(10)00097-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    2. Schmöcker, Jan-Dirk & Bell, Michael G.H. & Kurauchi, Fumitaka, 2008. "A quasi-dynamic capacity constrained frequency-based transit assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 925-945, December.
    3. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    4. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
    5. Sumalee, Agachai & Tan, Zhijia & Lam, William H.K., 2009. "Dynamic stochastic transit assignment with explicit seat allocation model," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 895-912, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trozzi, Valentina & Gentile, Guido & Bell, Michael G.H. & Kaparias, Ioannis, 2013. "Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 266-285.
    2. repec:eee:transe:v:113:y:2018:i:c:p:56-74 is not listed on IDEAS
    3. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    4. S. Mahmassani, Hani & F. Hyland, Michael, 2016. "Gap-based transit assignment algorithm with vehicle capacity constraints: Simulation-based implementation and large-scale applicationAuthor-Name: Verbas, Ömer," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 1-16.
    5. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    6. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    7. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    8. Schelenz, Tomasz & Suescun, Ángel & Karlsson, MariAnne & Wikström, Li, 2013. "Decision making algorithm for bus passenger simulation during the vehicle design process," Transport Policy, Elsevier, vol. 25(C), pages 178-185.
    9. Cats, Oded & West, Jens & Eliasson, Jonas, 2015. "Appraisal of increased public transport capacity: the case of a new metro line to Nacka, Sweden," Working papers in Transport Economics 2015:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    10. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    11. Cats, Oded & West, Jens & Eliasson, Jonas, 2016. "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 43-57.
    12. van Oort, Niels, 2014. "Incorporating service reliability in public transport design and performance requirements: International survey results and recommendations," Research in Transportation Economics, Elsevier, vol. 48(C), pages 92-100.
    13. Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.
    14. Wang, Shuaian & Qu, Xiaobo, 2017. "Station choice for Australian commuter rail lines: Equilibrium and optimal fare design," European Journal of Operational Research, Elsevier, vol. 258(1), pages 144-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:2:p:392-408. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.