IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v32y1998i2p141-154.html
   My bibliography  Save this article

A generalised stability criterion for motorway traffic

Author

Listed:
  • Holland, E. N.

Abstract

A common scenario on the motorway is that traffic that appears to be moving smoothly can suddenly spontaneously break down. This paper develops a new general criterion that determines whether these catastrophic events will occur. Primarily this is done in the context of the many car-following models described in the literature. The general criterion is shown to agree with the specific stability conditions of these models, including those in which drivers taken into account vehicles more than one ahead. As described in the literature, when the flow is stable, columns of vehicles are seen to smooth any perturbations to the flow. This enables the general criterion to be extended to include non-identical drivers. The stability criterion is also seen to agree with those established from continuum theory. Finally, the stability condition is considered with respect to data obtained from the M25 in the U.K.

Suggested Citation

  • Holland, E. N., 1998. "A generalised stability criterion for motorway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 141-154, February.
  • Handle: RePEc:eee:transb:v:32:y:1998:i:2:p:141-154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(97)00021-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferrari, Paolo, 1994. "The instability of motorway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 175-186, April.
    2. Michalopoulos, Panos G. & Yi, Ping & Lyrintzis, Anastasios S., 1993. "Continuum modelling of traffic dynamics for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 315-332, August.
    3. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    4. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    5. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    6. Del Castillo, J. M. & Pintado, P. & Benitez, F. G., 1994. "The reaction time of drivers and the stability of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 35-60, February.
    7. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    8. Papageorgiou, Markos, 1983. "A hierarchical control system for freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 17(3), pages 251-261, June.
    9. Denos C. Gazis & Robert Herman & Renfrey B. Potts, 1959. "Car-Following Theory of Steady-State Traffic Flow," Operations Research, INFORMS, vol. 7(4), pages 499-505, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banihan Gunay, 2007. "Detection Algorithms of Intentional Car Following on Smart Networks: A Primary Methodology," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(6), pages 627-642, July.
    2. Kim, T. & Zhang, H.M., 2008. "A stochastic wave propagation model," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 619-634, August.
    3. Gunay, Banihan, 2007. "Car following theory with lateral discomfort," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 722-735, August.
    4. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    5. Yanhong Wang & Rui Jiang & Yu (Marco) Nie & Ziyou Gao, 2021. "Impact of Information on Topology-Induced Traffic Oscillations," Transportation Science, INFORMS, vol. 55(2), pages 475-490, March.
    6. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    7. Yi, Jingang & Lin, Hao & Alvarez, Luis & Horowitz, Roberto, 2003. "Stability of macroscopic traffic flow modeling through wavefront expansion," Transportation Research Part B: Methodological, Elsevier, vol. 37(7), pages 661-679, August.
    8. Zhao, Tingting & Nie, Yu (Marco) & Zhang, Yi, 2014. "Extended spectral envelope method for detecting and analyzing traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    2. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    3. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    4. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    5. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2020. "The relationship between car following string instability and traffic oscillations in finite-sized platoons and its use in easing congestion via connected and automated vehicles with IDM based control," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 58-83.
    6. Zhang, Xiaoyan & Jarrett, David F., 1997. "Stability analysis of the classical car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 441-462, November.
    7. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    8. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    9. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    10. Jan Rouwendal, 2002. "Speed Choice, Car Following Theory and Congestion Tolling," Tinbergen Institute Discussion Papers 02-102/3, Tinbergen Institute.
    11. Niek Baer & Richard J. Boucherie & Jan-Kees C. W. van Ommeren, 2019. "Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic," Transportation Science, INFORMS, vol. 53(2), pages 585-596, March.
    12. Denos C. Gazis, 2002. "The Origins of Traffic Theory," Operations Research, INFORMS, vol. 50(1), pages 69-77, February.
    13. Hamdar, Samer H. & Mahmassani, Hani S. & Treiber, Martin, 2015. "From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 32-53.
    14. Piyush Dhawankar & Prashant Agrawal & Bilal Abderezzak & Omprakash Kaiwartya & Krishna Busawon & Maria Simona Raboacă, 2021. "Design and Numerical Implementation of V2X Control Architecture for Autonomous Driving Vehicles," Mathematics, MDPI, vol. 9(14), pages 1-24, July.
    15. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    16. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    17. Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    18. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    19. Daiheng Ni & John D. Leonard & Chaoqun Jia & Jianqiang Wang, 2016. "Vehicle Longitudinal Control and Traffic Stream Modeling," Transportation Science, INFORMS, vol. 50(3), pages 1016-1031, August.
    20. Pei, Xin & Pan, Yan & Wang, Haixin & Wong, S.C. & Choi, Keechoo, 2016. "Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 311-323.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:32:y:1998:i:2:p:141-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.