IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v123y2019icp199-223.html
   My bibliography  Save this article

Simultaneous correction of the time and location bias associated with a reported crash by exploiting the spatiotemporal evolution of travel speed

Author

Listed:
  • Wang, Zhengli
  • Jiang, Hai

Abstract

Accurate occurrence time and location of a reported crash are critical to effective crash analysis. Although there has been a proliferation of studies that attempt to correct the bias associated with a reported crash, most, if not all, of them focus exclusively on correcting the location bias. In this research, we propose to simultaneously correct the time and location bias associated with a reported crash, which is new to the literature. In our approach, we first follow standard procedures to identify the set of candidate links in the vicinity of the reported crash location. We then develop an integer programming model with a set of novel constraints to identify the candidate whose spatiotemporal evolution of travel speed is most congruent with the occurrence of a crash. We subsequently use the time and location where travel speed begins to drop to correct the bias associated with this crash. We prove that the spatiotemporal impact region, which characterizes the evolution of travel speed, estimated by our model is consistent with the propagation of shockwaves even when there are multiple candidate links and the exact occurrence time and location of the crash are unknown. This relaxes the standard assumptions required by existing models in the literature. We validate our model using real crash data in Beijing and find that our model can reduce the average bias in time from 7.3 min to 1.6 min, or a 78.08% reduction; and reduce the average bias in location from 0.156 km to 0.024 km, or a 84.62% reduction.

Suggested Citation

  • Wang, Zhengli & Jiang, Hai, 2019. "Simultaneous correction of the time and location bias associated with a reported crash by exploiting the spatiotemporal evolution of travel speed," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 199-223.
  • Handle: RePEc:eee:transb:v:123:y:2019:i:c:p:199-223
    DOI: 10.1016/j.trb.2019.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518307446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noland, Robert B. & Quddus, Mohammed A., 2005. "Congestion and safety: A spatial analysis of London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 737-754.
    2. Shively, Thomas S. & Kockelman, Kara & Damien, Paul, 2010. "A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 699-715, June.
    3. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.
    4. Hofleitner, Aude & Herring, Ryan & Bayen, Alexandre, 2012. "Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1097-1122.
    5. Wang, Zhengli & Qi, Xin & Jiang, Hai, 2018. "Estimating the spatiotemporal impact of traffic incidents: An integer programming approach consistent with the propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 356-369.
    6. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    7. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomoko Sakiyama & Ikuo Arizono, 2019. "Reversible Transitions in a Cellular Automata-Based Traffic Model with Driver Memory," Complexity, Hindawi, vol. 2019, pages 1-8, December.
    2. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    3. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    4. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    5. Wang, Zhengli & Qi, Xin & Jiang, Hai, 2018. "Estimating the spatiotemporal impact of traffic incidents: An integer programming approach consistent with the propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 356-369.
    6. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    7. Zhang, Jing & Xu, Keyu & Li, Shubin & Wang, Tao, 2020. "A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    8. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    9. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    11. Tianjun Feng & Keyi Liu & Chunyan Liang, 2023. "An Improved Cellular Automata Traffic Flow Model Considering Driving Styles," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    12. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    13. Angus Eugene Retallack & Bertram Ostendorf, 2019. "Current Understanding of the Effects of Congestion on Traffic Accidents," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    14. Pirdavani, Ali & Bellemans, Tom & Brijs, Tom & Kochan, Bruno & Wets, Geert, 2014. "Assessing the road safety impacts of a teleworking policy by means of geographically weighted regression method," Journal of Transport Geography, Elsevier, vol. 39(C), pages 96-110.
    15. Daniel Albalate, 2013. "The Road against Fatalities: Infrastructure Spending vs. Regulation?," ERSA conference papers ersa13p221, European Regional Science Association.
    16. Fu, Ding-Jun & Li, Qi-Lang & Jiang, Rui & Wang, Bing-Hong, 2020. "A simple cellular automaton model with dual cruise-control limit in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    17. Zhang, Jing & Xu, Keyu & Li, Guangyao & Li, Shubin & Wang, Tao, 2021. "Dynamics of traffic flow affected by the future motion of multiple preceding vehicles under vehicle-connected environment: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    19. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    20. Laha, A. K. & Putatunda, Sayan, 2017. "Travel Time Prediction for Taxi-GPS Data Streams," IIMA Working Papers WP 2017-03-03, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:123:y:2019:i:c:p:199-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.